izpis_h1_title_alt

Toposni modeli principov teorije množic : magistrsko delo
ID Mejak, Severin (Author), ID Simpson, Alex (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (776,82 KB)
MD5: 7F5310AF224C1072CA7D173E15AE4391

Abstract
In this thesis we approach axioms of choice of different strength by considering topoi. First, we present Grothendieck topoi and afterwards their abstractly axiomatised counterparts called elementary topoi. For these we show, that they carry logic, through which we can express set-theoretic statements. We consider topos versions of axiom of choice, axiom of dependent choice and axiom of countable choice. For Grothendieck topoi (over atomic sites) we give natural conditions (without reference to the internal language of the topos) for validity of the internal choice principles. We show that the same implications as for the set-theoretic versions also hold for the topos versions. We present three concrete examples of Grothendieck topoi, which show that the converses of these implications are not valid and that the three considered axioms are independent from IZFA (intuitionistic ZF, where atoms are allowed).

Language:English
Keywords:topos, sheaf, site, axiom of choice, dependent choice, countable choice, independence
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-108796 This link opens in a new window
UDC:510.6
COBISS.SI-ID:18690905 This link opens in a new window
Publication date in RUL:26.07.2019
Views:1244
Downloads:289
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Topos models of set-theoretic principles
Abstract:
V delu pristopimo k obravnavi aksiomov izbire različnih moči preko toposov. Najprej predstavimo Grothendieckove topose, nato pa abstraktno aksiomatizirane elementarne topose. Za slednje pokažemo, da so na naravni način nosilci logike, preko katere lahko znotraj toposa izrazimo trditve iz teorije množic. Obravnavamo toposne različice aksioma izbire, aksioma odvisne izbire in aksioma števne izbire. Za Grothendieckove topose (nad atomskimi odri) navedemo naravne pogoje (brez uporabe notranjega jezika toposa) za veljavnost toposnih različic aksiomov izbire. Dokažemo, da tudi za toposne različice formulacij veljajo iste implikacije kot v teoriji množic. Predstavimo tudi tri konkretne primere Grothendieckovih toposov in tako dokažemo, da obratne implikacije ne veljajo ter da so vsi trije obravnavani aksiomi neodvisni od IZFA (intuitionistične ZF, kjer so dovoljeni atomi).

Keywords:topos, snop, oder, aksiom izbire, aksiom odvisne izbire, aksiom števne izbire, neodvisnost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back