izpis_h1_title_alt

Primerjalna analiza metod za odkrivanje skupnosti v usmerjenih omrežjih : magistrsko delo
ID Benčina, Lena (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Mozetič, Igor (Comentor)

.pdfPDF - Presentation file, Download (10,95 MB)
MD5: F6C9632767DC4551EF8146B9B5363660
.pdfPDF - Appendix, Download (7,44 MB)
MD5: 7AD65310F665A7BB5F909738FB7FD5C1

Abstract
Magistrsko delo sodi na področje analize omrežij in obravnava problem odkrivanja skupnosti v omrežjih. Rešitev tega problema igra ključno vlogo pri analizi in razumevanju strukture velikih omrežij. Posebno pozornost posvetimo upoštevanju smeri povezav pri odkrivanju skupnosti. V praksi so smeri povezav, zaradi težavnosti obravnave, pogosto zanemarjene, kar lahko vodi do izgube pomembnih informacij, ki jih vsebujejo usmerjena omrežja. Podrobna analiza problema na intuitivnem kot tudi formalnem nivoju podaja bralcu celosten pregled problema in obstoječih metod za njegovo reševanje. Poleg obravnave usmerjenosti, dodatno težo problema predstavlja nejasna definicija skupnosti kot tudi naloge odkrivanja skupnosti. S pomočjo nekaj glavnih analiziranih pristopov reševanja raziskujemo razsežnosti definicije skupnosti. Dodatno predstavimo še nekaj skrbno izbranih metod: Louvain, Leiden, Infomap in OSLOM, pri vsaki pa del opisa namenimo prilagoditvi metode za upoštevanje smeri in uteži povezav. Pomemben del dela predstavlja empirična primerjava analiziranih metod s pomočjo umetno generiranih in realnih omrežij. Primerjava je izvedena na različnih nivojih, in sicer metode primerjamo na podlagi števila odkritih skupnosti, točnosti, stabilnosti ter modularnosti.

Language:Slovenian
Keywords:struktura skupnosti, skupnost, razbitje, usmerjena omrežja, modularnost, optimizacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-108344 This link opens in a new window
UDC:519.1
COBISS.SI-ID:18665049 This link opens in a new window
Publication date in RUL:28.06.2019
Views:1260
Downloads:346
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparative analysis of methods for community detection in directed networks
Abstract:
In this work we present an important part of network analysis, the problem of community detection. Hidden community structure, which we aim to reconstruct using community detection methods, contains important information about the underlying graph structure. The main focus of this work is to analyze the consideration of edge direction, which is usually ignored because of its complicated nature. We offer an exhaustive review of the problem and corresponding methods on intuitive as well as on formal level. An additional difficulty we face is the unclear definition of the problem. We explore various views of the problem definition with the detailed analysis including the presentation of the main approaches dealing with the problem. Additionally, we focus on four different methods, each dealing with directed and weighted networks on its own way. Methods we include are the well-known Louvain method, Leiden, Infomap and OSLOM. An important part of the work is the empirical comparative analysis of the presented methods based on a number of detected communities, accuracy, stability and value of modularity in synthetic as well as in real networks.

Keywords:community structure, community, partition, directed networks, modularity, optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back