Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Simuliranje zaustavitve reaktorja tlačnovodne jedrske elektrarne
ID
BRAŠANAC, JURE
(
Author
),
ID
Čepin, Marko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,40 MB)
MD5: F1A644A29AA39F3B06F6C3F2ED5BBB0B
Image galllery
Abstract
Vsaka jedrska elektrarna ima izveden sistem za hitro zaustavitev reaktorja – pogonski sistem z regulacijskimi palicami. V zaključnem delu sem se osredotočil na zaustavitev reaktorja tlačnovodne jedrske elektrarne z dvema zankama, brez uporabe regulacijskih palic, kar poznamo tudi kot pričakovan prehodni pojav brez hitre zaustavitve reaktorja. V začetnih poglavjih so razložene osnove delovanja tlačnovodnega jedrskega reaktorja z dvema zankama. Sledijo fizikalne osnove jedrske cepitve, vloga moderatorja, razlaga reaktivnosti, pojav moči zaradi zaostale toplote in njen izračun. Razložena je pomembnost koeficientov reaktivnosti v povezavi s samoregulacijo reaktorja, ki je zelo pomembna iz varnostnega stališča. Sledi poglavje o varnosti v jedrski elektrarni in o projektnih nesrečah povezanih s pričakovanim prehodnim pojavom brez hitre zaustavitve reaktorja. V svojem poglavju sem opisal delovanje in uporabo simulatorja PCTran. V poenostavljenem simulatorju jedrske elektrarne PCTran sem napravil simulacijo zaustavitve reaktorja s pomočjo vbrizgavanja borove kisline v primarno hladilo. Reaktor uspešno zaustavimo po približno 580 s od pričetka zaustavitve, po zaustavitvi je vedno prisotna moč zaradi zaostale toplote, katere simulator ne prikazuje. Izračun moči zaradi zaostale toplote sem naredil s pomočjo Patterson-Shlitz formule v programskem orodju Matlab in dobil bolj pravilen časovni potek reaktorske moči, ki ima všteto tudi moč zaradi zaostale toplote. Ostale parametre je simulator prikazal teoretično pričakovano. Z analiziranjem časovnih potekov različnih parametrov tekom zaustavitve sem ugotovil, da elektrarna po prehodnem pojavu brez hitre zaustavitve reaktorja preide v varno stanje.
Language:
Slovenian
Keywords:
pričakovan prehodni pojav brez hitre zaustavitve reaktorja
,
zaustavitev reaktorja z borovo kislino
,
simulator
,
regulacija reaktorske moči
,
reaktivnost
,
koeficienti reaktivnosti
Work type:
Master's thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2019
PID:
20.500.12556/RUL-108143
Publication date in RUL:
19.06.2019
Views:
1689
Downloads:
255
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BRAŠANAC, JURE, 2019,
Simuliranje zaustavitve reaktorja tlačnovodne jedrske elektrarne
[online]. Master’s thesis. [Accessed 9 July 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=108143
Copy citation
Share:
Secondary language
Language:
English
Title:
Simulation of shutdown of nuclear power plant with pressurized water reactor
Abstract:
Every nuclear power plant has a control rod cluster for reactor scram upon command. I focused on a reactor shutdown without usage of the control rods in a two-loop pressurized water reactor power plant. This scenario is called an anticipated transient without scram. In the beginning of this task I explain the basics of a two-loop pressurized water reactor power plant. I explain the basics of nuclear fission, the role of the moderator, reactivity, residual heat. Then, I explain the importance of reactivity coefficients, because they play a great role in self-regulation of the reactor. There is also a chapter about the safety in nuclear power plants and about the design basis accidents connected with anticipated transient without scram. I also included a chapter about the PCTran simulator, where I explain how it works and how to use it. I made a simulation of a reactor shutdown, which is achieved with boric acid injection to the primary system. Simulation was executed in a simplified nuclear power plant simulator PCTran. Reactor was successfully shut down 580 s after beginning of injection additional boron to the primary system. After shutdown there is always residual heat present, which the simulator failed to present. I calculated residual heat generation using Patterson-Schlitz formula in Matlab and then added this calculation up with the reactor power to get better and anticipated results. Analyzing transients of different parameters I concluded that the power plant achieves safe state after the anticipated transient without scram.
Keywords:
anticipated transient without scram
,
reactor shutdown with boric acid
,
reactor power regulation
,
reactivity
,
reactivity coefficients
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back