izpis_h1_title_alt

Uporaba strojnega učenja na področju športne analitike : magistrsko delo
ID Brglez, Domen (Author), ID Todorovski, Ljupčo (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5710/ This link opens in a new window

Abstract
Magistrsko delo se ukvarja z uporabo algoritmov strojnega učenja za športno analitiko. Športno analitiko lahko definiramo kot upravljanje s strukturiranimi podatki, ki jih zbiramo iz opazovanj športnih dogodkov s ciljem pridobivanja konkurenčne prednosti za športno ekipo ali posameznika. V magistrskem delu sem dokumentiral celotni postopek analize športnih podatkov, od zbiranja in urejanja podatkov v primerno obliko, preko preverjanja različnih nastavitev parametrov metod za učenje modelov, do izbire najbolj točnih napovednih modelov. Glavni namen magistrskega dela je bil priprava učnega gradiva za uvod v uporabo metod strojnega učenja, ki bi popolnim začetnikom omogočil spoznavanje različnih metod strojnega učenja skozi konkreten primer njihove uporabe. Zato v prvem delu predstavim različne metode strojnega učenja za gradnjo napovednih modelov iz podatkov in postopke merjenja točnosti napovedi. V drugem, praktičnem delu, pa se osredotočam na izbiro najbolj ustreznega napovednega modela za napovedovanje izidov tekem. Rezultati na podatkih iz lige NBA so pokazali, da so linearni modeli najbolj ustrezni za napovedovanje izidov tekem. Prvo raziskovalno vprašanje se je nanašalo na koristnost metode analize glavnih komponent za predobdelavo podatkov. Po pričakovanjih, glede na veliko število napovednih spremenljivk, se je izkazalo, da uporaba predobdelave poveča točnost napovednih modelov. Drugo raziskovalno vprašanje se je nanašalo na povezavo med uvrstitvijo ekipe in točnostjo modela za napovedovanje izidov njihovih tekem. Rezultati kažejo, da ni povezave med uvrstitvijo ekipe na lestvici NBA ob koncu sezone in točnostjo modela za napovedovanje njihovih tekem.

Language:Slovenian
Keywords:športna analitika, strojno učenje, programski jeziki, napovedni modeli, liga NBA, algoritmi, umetna inteligenca
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Publisher:[D. Brglez]
Year:2019
Number of pages:94 str.
PID:20.500.12556/RUL-107711 This link opens in a new window
UDC:519.85:796(043.2)
COBISS.SI-ID:12427337 This link opens in a new window
Publication date in RUL:16.05.2019
Views:1746
Downloads:269
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine learning in sports analytics
Abstract:
This thesis deals with applying machine learning algorithms in sports analytics. Sports analytics can be defined as management of structured data collected from sport activities that would allow for getting competitive advantage for a sport team or an individual. More specifically, I am interested in predicting the results of basketball games. I used machine learning algorithms to builds prediction models from data on the outcomes of the games played within the NBA league and data on the league participants. The thesis documents the whole process of data analysis, from the early phase of data collection and transformation, through selecting optimal settings of the parameters of the algorithms for learning predictive models, to the final phase of selecting the most accurate predictive models. The main purpose of the thesis is a preparation of a guide for beginners in the field of machine learning that would familiarize interested students with machine learning algorithms through a show case of their application. To follow the purpose, the first, theoretical part of the thesis introduces different machine learning algorithms for building prediction models from data and methods for measuring the models' accuracy. The focus of the second, practical part is on building accurate models for predicting the outcomes of NBA games. Results obtained on data from the last three NBA seasons show that linear models are the most accurate ones. First research question was related to the benefit of using principal component analysis for data pre-processing. As expected, due to the large number of predictive variables, the use of principal component analysis leads to more accurate models. The focus of the second research question was on exploring the impact of team’s rank in the standings on the predictive accuracy. Results show that team’s place in the standings at the end of the season is not related to the accuracy of the model for predicting the outcomes of their games.

Keywords:programming, physical education, programiranje, športna vzgoja

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back