izpis_h1_title_alt

Aproksimacija razpršenih podatkov z uporabo radialnih baznih funkcij : magistrsko delo
ID Vinter, Maša (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,84 MB)
MD5: 46369CE48E2E7E11B482DB0D4DC9EAD0

Abstract
V tem delu obravnavamo problem aproksimacije razpršenih podatkov v eni in več dimenzijah. Ker je znano, da pri aproksimaciji s polinomi z več spremenljivkami obstajajo omejitve glede izbire interpolacijskih točk, ki zagotavljajo obstoj in enoličnost interpolantov, tukaj predstavimo aproksimacijo z radialnimi baznimi funkcijami. Prednost radialnih baznih funkcij je, da so definirane z normo, zato se pri delu z njimi izognemu računanju v večih dimenzijah. Predstavljeni so pogoji, ki morajo za izbrane radialne bazne funkcije veljati, da bo rešitev interpolacijskega problema obstajala in bo enolična, ter primeri ustreznih družin funkcij. Omenjeni so tudi problemi, ki lahko nastanejo pri interpolaciji z radialnimi baznimi funkcijami. Opisan je način interpolacije s polinomsko natačnostjo in pogoji, ki morajo pri tem veljati. Na kratko je predstavljena tudi možnost uporabe radialnih baznih funkcij pri aproksimaciji z metodo najmanjših kvadratov in prednosti te metode.

Language:Slovenian
Keywords:interpolacija, radialne bazne funkcije, aproksimacija po metodi najmanjših kvadratov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-107505 This link opens in a new window
UDC:519.6
COBISS.SI-ID:18626393 This link opens in a new window
Publication date in RUL:21.04.2019
Views:1946
Downloads:243
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Scattered data approximation with radial basis functions
Abstract:
The topic of this thesis is approximation of scattered data in one and multiple dimensions. Given the fact that approximation with multivariate polynomials has some restrictions regarding the choice of interpolation points that guarantee the problem to be well-posed, we propose approximation with radial basis functions. Since radial basis functions are defined with a norm we can avoid dealing with calculations in multiple dimensions. We present the conditions that have to hold for radial basis functions so that solution exists and is unique. We also present a few examples of families of functions that fulfill these conditions and problems that can arise when interpolating with radial basis functions. The manner of interpolation with polynomial precision and the conditions that have to be met are described too. We briefly present the possibility of using radial basis functions in least squares approximation and the advantages of this method.

Keywords:interpolation, radial basis functions, least squares approximation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back