izpis_h1_title_alt

Modeliranje kitarskega ojačevalnika s pomočjo algoritmov strojnega učenja in principa črne škatle
ID GIACOMELLI, JAN (Author), ID Beguš, Samo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,87 MB)
MD5: 90B43EC38B09242CF0FFFDC7E45DB30C

Abstract
V magistrskem delu je opisano raziskovanje možnosti za implementacijo modela kitarskega ojačevalnika s pomočjo algoritmov strojnega učenja in principa črne škatle. Ojačevalnik je obravnavan kot črna škatla, za katero poznamo vhode in njihove pripadajoče izhode. Razloženi in opisani so postopki pridobivanja odzivov za sinusne in kitarske signale ter avtomatizacija le-tega. Predstavljeni so rezultati poizkusov pri gradnji modelov s pomočjo algoritma naključnega gozda odločitvenih dreves ter nevronske mreže. Predstavljeni so njune prednosti, slabosti in omejitve za obravnavani primer ter rezultati dela z vsakim od njiju. Analizirani so različni načini priprave v časovnem in frekvenčnem prostoru in izbire podatkov. Razloženo in pokazano je, zakaj tak pristop v dotičnem primeru ne daje zadovoljivih rezultatov za dejansko implementacijo modela, ki bi bil lahko uporabljen kot simulacija kitarskega ojačevalnika.

Language:Slovenian
Keywords:strojno učenje, ojačevalnik, kitara, obdelava podatkov
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2019
PID:20.500.12556/RUL-107435 This link opens in a new window
Publication date in RUL:12.04.2019
Views:1380
Downloads:241
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Guitar amplifier modelling using machine learning algorithms and the black box principle
Abstract:
This thesis examines possibility of building guitar amplifier model with machine learning models and black box approach. It presents automated signal recording with its conversion and pre-processing for machine learning models. Signals where processed in frequency and time domain. Different algorithms emphasised on neural network and random forest were studied. It describes different points of view and approaches to the addressed problem. Problem was studied throughout working zone with sine signals, on single setting with sine signals and on single setting with guitar signals. Although considered on different working zones and domains, the hypothesis, that it is possible to build quality guitar amplifier with machine learning and black box approach, were refuted.

Keywords:machine learning, amplifier, guitar, data processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back