Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Optimizacija legiranja jekla s pomočjo strojnega učenja
ID
ŠTOSIR, ŽIGA
(
Author
),
ID
Kukar, Matjaž
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,33 MB)
MD5: 8403B74868F15EB7090654724BAB9175
Image galllery
Abstract
Cilj diplomske naloge je modeliranje doziranja in optimizacija porabe legirnih dodatkov v proizvodnji jekla. V prvem delu predstavimo proces izdelave jekla in nekaj osnov metalurgije, ki so podlaga za razumevanje zastavljenega problema. V nadaljevanju predstavimo orodja in tehnologije, ki smo jih uporabili pri izdelavi naloge. Sledijo opis, način pridobitve, obdelave in vizualizacije podatkov, modeliranje problema in predstavitev rezultatov. Pri delu smo uporabili orodje Orange s programskim jezikom Python in knjižnico Matplotlib. V zadnjem delu predstavimo zaključek ter možnosti prihranka pri porabi legirnih dodatkov in časa, potrebnega za izdelavo šarže, kar predstavlja velik potencial za nadaljnje delo.
Language:
Slovenian
Keywords:
izdelava jekla
,
strojno učenje
,
optimizacija
,
linearno programiranje
,
Python
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2019
PID:
20.500.12556/RUL-106472
Publication date in RUL:
26.02.2019
Views:
1894
Downloads:
262
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Optimization of steel alloying with machine learning
Abstract:
The aim of this thesis is the optimization of alloy additions in steel making. In the first part of this thesis we present some basics of metallurgy and the process of steel making where our problem originates from. Then we present the tools and technologies used in development, followed by a description on how we processed and modelled the data. After that we then describe the results. In conclusion we summarize our work and present possibilities for improvement and further development.
Keywords:
steel making
,
machine learning
,
optimization
,
linear programming
,
Python
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back