izpis_h1_title_alt

Uporaba globokega učenja pri pripravi hrane v malih gospodinjskih aparatih
ID Novak, Marko (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Kukar, Matjaž (Comentor)

.pdfPDF - Presentation file, Download (7,48 MB)
MD5: 0B49C0DDAFDEA2AB64A59C3AA5516A26

Abstract
Hiter razvoj na področju vgrajenih sistemov v zadnjih letih danes omogoča vgrajevanje zmogljivih procesnih enot v mnoge naprave. Priprava hrane je eno od področij, kjer lahko uporaba takšnih tehnologij olajša vsakodnevna opravila ter prispeva k boljšim rezultatom. V diplomski nalogi smo testirali možnost uporabe kamere in umetnih nevronskih mrež za nadzor stepanja smetane v naprednih kuhinjskih mešalnikih. Najprej smo naredili več posnetkov stepanja smetane ter posamezne fotografije iz posnetkov označili glede na stopnjo stepenosti smetane. Predstavili smo nekaj pomembnejših nevronskih mrež za analizo fotografij (AlexNet, MobileNet, NasNet) ter testirali, kako se nevronske mreže, naučene na podlagi ustvarjene baze fotografij, obnesejo v praksi. Rezultati so pokazali, da lahko tako naučena nevronska mreža doseže primerno točnost, tudi ko so posnetki narejeni v drugačnih pogojih kot posnetki, ki smo jih uporabili pri učenju.

Language:Slovenian
Keywords:umetne nevronske mreže, globoko učenje, gospodinjski aparati, analiza fotografij, smetana
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-106230 This link opens in a new window
Publication date in RUL:13.02.2019
Views:1273
Downloads:248
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of deep learning in kitchen appliances to aid food preparation
Abstract:
Rapid development of embedded systems in recent years allows us to integrate powerful processing units in most electronic devices. Food preparation is one such field, where technology can ease everyday chores, and help us achieve better results. We've tried out various ways to use a camera in combination with artificial neural networks to control kitchen mixer when making whipped cream. First we made several recordings of cream during mixing. We've labelled each frame according to how well-mixed the cream is. We show some higher-importance neural networks for image analysis (AlexNet, MobileNet, NasNet) and test how well those neural networks perform after being trained on our dataset. Our results indicate that such neural networks are able to give an accurate prediction, even on photos captured under different conditions than the training data.

Keywords:artificial neural networks, deep learning, kitchen appliances, image analysis, cream

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back