izpis_h1_title_alt

Upravljanje s tveganji pri obvezniških portfeljih : delo diplomskega seminarja
ID Slijepčević, Tatijana (Author), ID Kokol-Bukovšek, Damjana (Mentor) More about this mentor... This link opens in a new window, ID Toman, Aleš (Comentor)

.pdfPDF - Presentation file, Download (369,01 KB)
MD5: 622D7C8FD833C8BE63AFB98D1809C63F

Abstract
V delu diplomskega seminarja sem se osredotočila na upravljanje s tveganji pri obvezniških portfeljih državnih obveznic s fiksnimi kuponi. Te naj bi bile kreditno netvegane in najbolj likvidne, zato upravljavca portfelja najbolj skrbi obrestno tveganje in z njim povezano tveganje reinvestiranja. Predstavljeni so štirje modeli, s katerimi lahko vlagatelji zmanjšajo svojo izpostavljenost obrestnemu tveganju: model trajanja, model trajanja s konveksnostjo, model kvadratov in model absolutnih vrednosti. Model trajanja imunizira portfelj obveznic pred infinitezimalnimi in vzporednimi spremembami na časovni strukturi obrestnih mer, če se trajanje portfelja ujema z naložbenim obdobjem vlagatelja in je sedanja vrednost njegovih prihodnjih finančnih obveznosti enaka sedanji vrednosti portfelja. Model trajanja s konveksnostjo še bolje imunizira portfelj obveznic pred vzporednimi spremembami, če poleg tega velja še, da je konveksnost portfelja enaka konveksnosti obveznosti. Model kvadratov in model absolutnih vrednosti imunizirata portfelj pred poljubnimi spremembami. Temeljita na minimizaciji mere kvadratov oziroma mere absolutnih vrednosti. Razlika med njima je ta, da model kvadratov v izračunu poleg mere kvadratov upošteva še trajanje portfelja, medtem ko model absolutnih vrednosti potrebuje zgolj mero absolutnih vrednosti.

Language:Slovenian
Keywords:finančna matematika, državne obveznice, imunizacija, trajanje, konveksnost, mera kvadratov, mera absolutnih vrednosti
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[T. Slijepčević]
Year:2018
Number of pages:28 str.
PID:20.500.12556/RUL-106210 This link opens in a new window
UDC:519.8
COBISS.SI-ID:18553689 This link opens in a new window
Publication date in RUL:12.02.2019
Views:2235
Downloads:339
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Risk management of bond portfolios
Abstract:
In the diploma thesis, I focus on fixed-coupon government bond portfolio risk management. Government bonds are supposed to be credit risk-free and very liquid, therefore a portfolio manager is mostly concerned about interest rate risk and reinvestment risk. Four models that reduce investor's exposure to the interest rate risk are presented: the duration model, the duration model with convexity, the M-Square model and the M-Absolute model. The duration model immunizes a bond portfolio against infinitesimal and parallel shifts in the time structure of interest rates if portfolio's duration matches investor's investment period and if the present value of portfolio matches the present value of investor's future financial liabilities. The duration model with convexity immunizes bond portfolio against parallel shifts even better if, in addition, the convexity of portfolio is equal to the convexity of liabilities. The M-Square model and the M-Absolute model immunize portfolio against any changes in the time structure of interest rates. They are based on minimization of the M-Square measure and the M-Absolute measure of portfolio respectively. The difference between them is that the M-Square model considers portfolio's duration besides its M-Square measure, whereas the M-Absolute model only considers its M-Absolute measure.

Keywords:government bonds, immunization, duration, convexity, M-square, M-absolute

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back