Details

Analiza obratovalnih parametrov ležaja sesalne enote z metodami strojnega učenja
ID Benedik, Blaž (Author), ID Duhovnik, Jožef (Mentor) More about this mentor... This link opens in a new window, ID Tavčar, Jože (Comentor)

.pdfPDF - Presentation file, Download (6,20 MB)
MD5: FC18CC16EC084761AF85B2BE16C2DCD9
.pdfPDF - Appendix, Download (1,15 MB)
MD5: 01C5B33C7731028E9266F550E3DFB3B6
.pdfPDF - Appendix, Download (38,08 MB)
MD5: C0C421F2E09DB414C902BA5C3789EEDB
This document has even more files. Complete list of files is available below.

Abstract
Jedro doktorske naloge je empirično modeliranje dobe trajanja ležaja sesalne enote. Glavne vplive na dobo trajanja smo razložili s statistično prepoznanimi vplivi širšega nabora domnevnih vplivov. Postavljeni napovedni model ocenjuje dobo trajanja ležaja za 50 odstotno verjetnost odpovedi L_50. Le-to določajo temperatura ležaja, hitrostni faktor, ekvivalentna obremenitev, količina masti, vrsta oljne osnove, vrsta ležajne kletke, vrsta tesnila, tolerančni razred in položaj ležaja v sesalni enoti. Nabor empiričnih podatkov je sprva predstavljalo 4672 populacij z 38.000 sesalnimi enotami. Stroge filtrirne zahteve so rezultirale v končnem seznamu 170-ih populacij za izgradnjo Weibullove podatkovne baze. Rezultat multiple linearne regresije je dobljen empirični model, ki skupaj z zgrajeno Weibullovo bazo predstavljajo doprinos k znanosti na področju napovedovanja dobe trajanja ležaja.

Language:Slovenian
Keywords:sesalna enota, odpovedi ležaja, razpad masti, Weibullova porazdelitev, cenzurirani podatki, filtriranje testov, doba trajanja ležaja linearna regresija
Work type:Doctoral dissertation
Organization:FS - Faculty of Mechanical Engineering
Year:2018
PID:20.500.12556/RUL-106150 This link opens in a new window
Publication date in RUL:01.02.2019
Views:1300
Downloads:671
Metadata:XML DC-XML DC-RDF
:
BENEDIK, Blaž, 2018, Analiza obratovalnih parametrov ležaja sesalne enote z metodami strojnega učenja [online]. Doctoral dissertation. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=106150
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Bearing operational parameters analysis in vacuum cleaner motor using machine learning methods
Abstract:
The focus of the thesis is the empirical modelling of bearing life. An approach towards the prediction of life through range of different conditions was used. The model estimates bearing life for 50% probability of survival - L_50, which is determined with bearing temperature, speed factor, equivalent load, grease fill, type of oil, type of bearing cage, type of seals, tolerance class and side of the motor. The empirical data initially consisted of 4672 different test populations, involving 38.000 vacuum cleaner motors. Strict filtering requirements resulted in 170 final populations selected for building Weibull databank for learning final models. The obtained empirical models gained with multiple linear regression are together with obtained databank a contribution to the science in field of bearing life forecasting.

Keywords:vacuum cleaner motor, bearing failure, grease deterioration, Weibull probability function, censored data Filtering of tests Bearing life Linear regression

Similar documents

Similar works from RUL:
  1. Influence of thermal modification of densified wood on fungicidal properties
  2. Determination of thermal modification degree of ash wood
  3. Influence of thermal modification temperature on wettability of wood
  4. Influence of thermal modification of wood on curing of adhesives and bond performance
  5. Wood charring as a finishing technique
Similar works from other Slovenian collections:
  1. Selected physical and mechanical properties of viscoelastic thermal compressed wood from fast growing poplar
  2. Densified wood impregnated with phenol resin for reduced set-recovery
  3. Bioinspiration as a source for alternative wood modification, protection and functionalization
  4. The use of thermally modified proteins for bio-adhesives
  5. Numerical welding simulation

Files

Loading...
Loading...

Back