izpis_h1_title_alt

Greenov izrek o hiperravninah v kompleksnem projektivnem prostoru : magistrsko delo
ID Simonič, Aleksander (Author), ID Forstnerič, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (583,85 KB)
MD5: 039ACA85C1A73EC86F19D80B78748D8D

Abstract
Podlaga za vpeljavo Kobayashijeve hiperboličnosti za kompleksne mnogoterosti sta klasična izreka iz analize ene kompleksne spremenljivke: Schwarz-Pickova lema in mali Picardov izrek. V magistrskem delu dokažemo Greenovo projektivno posplošitev Picardovih izrekov: komplement unije $2n+1$ hiperravnin v splošnem položaju v ${\mathbb {CP}}^n$ je poln hiperboličen in hiperbolično vložen v ${\mathbb {CP}}^n$. To storimo z uporabo razširjenega Brodyjevega izreka za komplement hiperploskve v kompaktni kompleksni mnogoterosti in Borelove posplošitve malega Picardovega izreka, ki ga dokažemo s pomočjo prvega glavnega izreka in leme o odvodu logaritma teorije Nevanlinne za meromorfne funkcije.

Language:Slovenian
Keywords:kompleksne mnogoterosti, Kobayashijeva hiperboličnost, hiperbolične vložitve, hiperravnine
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-106108 This link opens in a new window
COBISS.SI-ID:18512985 This link opens in a new window
Publication date in RUL:28.01.2019
Views:1784
Downloads:263
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Green's theorem on hyperplanes in complex projective space
Abstract:
The rationale behind introduction of the Kobayashi hyperbolicity for complex manifolds are two classical theorems of complex analysis in one variable, namely, the Schwarz-Pick lemma and the little Picard theorem. In the present master thesis Green's projective generalisation of Picard's theorems is proved: The complement of $2n+1$ hyperplanes in general position in ${\mathbb {CP}}^n$ is complete hyperbolic and hyperbolically imbedded in ${\mathbb {CP}}^n$. This is achieved by using the extended Brody theorem for complement of a hypersurface in a compact complex manifold and Borel's generalisation of the little Picard theorem, which proof uses the first main theorem and the logarithmic derivative lemma from Nevanlinna's theory of meromorphic functions.

Keywords:complex manifolds, Kobayashi hyperbolicity, hyperbolic imbeddings, hyperplanes

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back