Details

Transportation mode detection based on mobile sensor data
ID Urbančič, Jasna (Author), ID Pejović, Veljko (Mentor) More about this mentor... This link opens in a new window, ID Mladenić, Dunja (Comentor)

.pdfPDF - Presentation file, Download (1,31 MB)
MD5: D813EFEBD7104B64E6BBD26F1CC24551

Abstract
This thesis addresses transportation mode detection based primarily on mobile phone data using machine learning methods. Our approach uses short samples of accelerometer readings taken while traveling in a vehicle to distinguish between three modalities --- car, bus, and train. We use gravity estimation to pre-process the samples. We extract features from statistical, frequency-based, and peak-based domain. With statistical analysis of the features we gain an introspective into the data. To additionally analyze the features we construct several feature sets for classification. As a classifier we use random forest, support vector machine, and neural network. Our approach correctly classifies 65% cars, 63% buses, and 18% trains using neural network.

Language:English
Keywords:machine learning, mobile sensing, data mining, pattern recognition, intelligent transportation systems
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-106015 This link opens in a new window
Publication date in RUL:14.01.2019
Views:2261
Downloads:414
Metadata:XML DC-XML DC-RDF
:
URBANČIČ, Jasna, 2018, Transportation mode detection based on mobile sensor data [online]. Master’s thesis. [Accessed 19 August 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=106015
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Detekcija prevoznega sredstva z mobilnimi senzorji
Abstract:
V delu obravnavamo detekcijo prevoznega sredstva z mobilnimi senzorji in metodami strojnega učenja. Pri tem uporabljamo kratke vzorce podatkov iz pospeškometra, ki jih zajamemo med uporabnikovim potovanjem v vozilu. Razločujemo med tremi prevoznimi sredstvi --- avtom, avtobusom in vlakom. Vzorce predobdelamo tako, da iz pospeškov izločimo gravitacijsko komponento. Iz vzorcev izločimo statistične in frekvenčne značilke ter značilke vrhov. S statistično analizo značilk dobimo vpogled v podatke. Dodatno analiziramo značilke preko različnih množic značilk, ki jih uporabljamo za klasifikacijo. Kot klasifikatorje uporabljamo naključne gozdove, metodo podpornih vektorjev in nevronske mreže. Z uporabo nevronskih mrež smo pravilno razpoznali 65% avtomobilov, 63% avtobusov in 18% vlakov.

Keywords:strojno učenje, mobilno zaznavanje, podatkovno rudarjenje, razpoznava vzorcev, inteligentni transportni sistemi

Similar documents

Similar works from RUL:
  1. Clinical pharmacogenetic models for personalized rheumatoid arthritis treatment
  2. Vpliv blokatorjev beta receptorjev na dinamiko repolarizacije prekatov pri bolnikih s srčnim popuščanjem
  3. Vpliv zdravil z antipiretičnim učinkom na izid okužb pri onkoloških bolnikih s hudo nevtropenijo
  4. Pleiotropni učinki nizkih odmerkov zaviralcev sistema renin-angiotenzin in statinov na arterijsko steno
  5. Role of novel vector flow mapping parameters to diagnose diastolic dysfunction and heart failure with preserved ejection fraction
Similar works from other Slovenian collections:
  1. Zdravljenje bolečine z opioidi
  2. Zdravljenje s kemoterapijo
  3. Zdravstvena nega bolnika, ki sprejema citostatsko terapijo
  4. The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gram-negative bacteria in ICU patients
  5. Healt care [i. e. healthcare] for the patient with heart failure

Back