izpis_h1_title_alt

Kubični Clough-Tocherjevi zlepki : magistrsko delo
ID Stupica, Katarina (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,43 MB)
MD5: BB0388A539B1AC76DC89389E7F9CF777

Abstract
V nalogi opišemo prostor kubičnih Clough-Tocherjevih zlepkov nad triangulacijo domene, pri čemer vsak trikotnik iz triangulacije z izbiro delilne točke razdelimo na tri manjše. Nad vsakim trikotnikom želimo dobiti kubični polinom, nad celotno triangulacijo pa ${\cal C}^1$ zlepek. Zanimal nas bo poseben podprostor tega prostora, prostor zreduciranih Clough-Tocherjevih zlepkov, za katerega lahko konstruiramo normalizirano bazo. Bazni zlepki imajo lokalni nosilec, so nenegativni in tvorijo particijo enote. Iskanje baze lahko prevedemo na geometrijski problem iskanja množice trikotnikov, ki morajo vsebovati določen nabor točk. To nas pripelje do strukture kontrolnih trikotnikov in stabilnega računanja zreduciranih Clough-Tocherjevih zlepkov.

Language:Slovenian
Keywords:Clough-Tocherjevi zlepki, B-zlepki, makro-elementi, določitvene množice
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-105133 This link opens in a new window
UDC:519.6
COBISS.SI-ID:18474329 This link opens in a new window
Publication date in RUL:28.10.2018
Views:1523
Downloads:289
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cubic Clough-Tocher splines
Abstract:
In this thesis we present the Clough-Tocher space of cubic splines on a triangulation, where we make a refinement of the triangulation by splitting each triangle on three smaller ones. The spline is composed of cubic polynomials over each triangle and it is ${\cal C}^1$ over the whole triangulation. We focus on a special subspace - the reduced Clough-Tocher spline space and construct a normalized basis for it. The basis splines have a local support, they are nonnegative and they form a partition of unity. Geometrically, the basis construction problem is converted to a problem of finding a set of triangles that contain specific points. This leads us to control triangles and a stable way of computing with Clough-Tocher splines.

Keywords:Clough-Tocher splines, B-splines, macro-elements, determining sets

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back