izpis_h1_title_alt

Globoko učenje na neslikovnih medicinskih podatkih
ID Pavlin, Jan (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,12 MB)
MD5: 0F1453FB4BB756957CEC78A708966B1E

Abstract
V zadnjem desetletju se vse bolj množično uporabljajo tehnike globokega učenja. Zaslugo za to lahko pripišemo razvoju tehnologije in zlasti znižanju cen grafičnih kartic, ki omogočajo hitro učenje. Globoko učenje je področje strojnega učenja in se je uveljavilo predvsem na področjih računalniškega vida, prepoznavanja govora, prepoznavanja slik, analize teksta. Uporaba tega področja počasi prodira tudi v medicino. V diplomskem delu bom preučil področja globokega učenja, upravljanja s pomanjkljivimi podatki in upravljanja z neuravnoteženimi podatki. Zgradil bom modele različnih topologij globokih nevronskih mrež in med njimi primerjal dosežene rezultate na podatkovni množici medicinskih podatkov. Analiziral bom tudi uporabo grafične kartice in procesorja za učenje ter uporabo nevronskih mrež. Cilj diplomske naloge je preizkusiti in analizirati uporabo globokega učenja na medicinskih podatkih z uporabo različnih pristopov k reševanju problema pomanjkljivih podatkov. Določiti je potrebno, katera topologija in katera metoda predprocesiranja podatkov se najbolje obneseta, kakšne rezultate dosežeta in koliko časa je potrebnega za učenje te nevronske mreže.

Language:Slovenian
Keywords:globoko učenje, medicinski podatki, nevronske mreže
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-105046 This link opens in a new window
Publication date in RUL:23.10.2018
Views:1837
Downloads:323
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep learning on non-image medical data
Abstract:
Use of deep learning is increasing in the last decade. This is mostly because advancement of technology and also price reduction of various graphical processors, which allow quick learning. Deep learning is an area of machine learning and has been used for computer vision, speech recognition, image classification and other. Usage of deep learning is being slowly used in medicine. In the diploma thesis, I will examine the areas of deep learning, management of insufficient data and management of unbalanced data. I will build models of different topologies of deep neural networks and compare the results achieved on the data set of medical data among them. I will also analyse the learning and use of a graphics card and a processor for learning and using neural networks. The goal of the thesis is to test and analyse the use of deep learning on medical data using different approaches to solving the problem of poor data. It is necessary to specify which topology and which methods of data preprocessing are best managed, what results they achieve and how much time is needed to learn this neural network.

Keywords:deep learning, medical data, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back