Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Razpoznavanje slovenskega govora z metodami globokih nevronskih mrež
ID
Ulčar, Matej
(
Author
),
ID
Robnik Šikonja, Marko
(
Mentor
)
More about this mentor...
,
ID
Dobrišek, Simon
(
Comentor
)
PDF - Presentation file,
Download
(700,11 KB)
MD5: CF5844140875D1ACCAD9A61E360FA590
Image galllery
Abstract
Ročno zapisovanje govora je počasen proces, ki ga čedalje bolj nadomešča avtomatsko razpoznavanje govora. Slednje se lahko uporablja tudi za glasovno upravljanje programov in naprav. V magistrski nalogi smo kot osnovo za razpoznavanje govorjene slovenščine uporabili uveljavljene metode GMM-HMM za akustični model in n-gramov za jezikovni model. Modela smo nadgradili z uporabo globokih nevronskih mrež, ki so se izkazale za zelo uspešne. Preizkusili smo različne arhitekture časovno zakasnjenih nevronskih mrež in nevronskih mrež z dolgim kratkoročnim spominom na akustičnem in jezikovnem modelu razpoznavalnika govora. Razpoznavalnik smo učili na širokem besednjaku, ki vsebuje približno milijon različnih besed. Najboljše rezultate dosegajo časovno zakasnjene nevronske mreže, kjer smo dosegli 72,84% pravilno prepoznanih besed pri tekočem govoru.
Language:
Slovenian
Keywords:
strojno učenje
,
globoke nevronske mreže
,
razpoznavanje govora
Work type:
Master's thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-104850
Publication date in RUL:
12.10.2018
Views:
3351
Downloads:
405
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ULČAR, Matej, 2018,
Razpoznavanje slovenskega govora z metodami globokih nevronskih mrež
[online]. Master’s thesis. [Accessed 15 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=104850
Copy citation
Share:
Secondary language
Language:
English
Title:
Computer Speech Recognition in Slovene Language
Abstract:
Manual transcription of speech is slow and is being replaced by automatic speech recognition systems. These systems are also used for voice control of various programs and devices. In this thesis, we used as a baseline for Slovene speech recognition GMM-HMM methods for acoustic model and n-grams for language model. We improved both models with deep neural networks, which have proven to be very successful. We tested several architectures of time-delayed neural networks and neural networks with long short-term memory for both acoustic and language model. We used a large lexicon, containing about a million words. Time-delayed neural networks achieved the best results on continuous speech, with 72,84% of correctly identified words.
Keywords:
machine learning
,
deep neural networks
,
speech recognition
Similar documents
Similar works from RUL:
Differences in metal ions released from orthodontic appliances in an in vitro and in vivo setting
The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices
Značilnosti vezave antitrombinskih protiteles in vitro ter in vivo
Primerjava lastnosti različnih vrst luciferaz iz kresničk v celičnih, in vitro in in vivo študijah
Vpliv transmaščobnih kislin na zdravje
Similar works from other Slovenian collections:
Disappearance of Fucus virsoides J. Agardh from the Slovenian coast (Gulf of Trieste, Northern Adriatic)
Peptides derived from phage display libraries as potential neutralizers of Shiga toxin-induced cytotoxicity in vitro and in vivo
Distribution of seaweed Fucus virsoides J. Agardh in Boka Kotorska bay (south Adriatic sea)
Potent and selective in vitro and in vivo antiproliferative effects of metal-organic trefoil knots
In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery
Back