izpis_h1_title_alt

O rangih matrik nad polkolobarjem : magistrsko delo
ID Rebernišek, Monika (Author), ID Oblak, Polona (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (599,68 KB)
MD5: 33CD30560720A367B931D9156673129A

Abstract
Polkolobar $S$ je algebrska struktura z dvema notranjima operacijama $\oplus$ in $\odot$. Pri tem je $(S,\oplus)$ komutativni monoid z enoto $0_{S}$, $(S,\odot)$ monoid z enoto $1_{S}$, množenje je distributivno nad seštevanjem ter velja, da se vsak element iz $S$ pri množenju z $0_{S}$ zmnoži v $0_{S}$. Vendar pa ne obstajajo nujno inverzni elementi niti za $\oplus$ niti za $\odot$. V magistrskem delu bomo obravnavali polkolobarje, njihove lastnosti, različne primere in nekatere primere uporabe, predvsem optimizacijske. Osredotočili se bomo na polkolobarje matrik. Pri teh bomo definirali različne range, ki v splošnem med seboj niso enaki. Vemo, da je nad poljem veliko definicij rangov matrik, ki so med seboj ekvivalentne. Te ekvivalence pa ne držijo nujno za range matrik nad polkolobarjem. V delu bomo dokazali nekatere neenakosti ter pokazali na primerih, da enakosti v splošnem ne veljajo. Dokazali bomo tudi nekatere neenakosti, ki veljajo za rang vsote dveh matrik in za rang produkta dveh matrik.

Language:Slovenian
Keywords:polkolobar, rang, matrika, polje, tropski polkolobar
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-104460 This link opens in a new window
UDC:512
COBISS.SI-ID:18458201 This link opens in a new window
Publication date in RUL:07.10.2018
Views:1424
Downloads:272
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Ranks of matrices over semirings
Abstract:
The semiring $S$ is an algebraic structure with two binary operations $\oplus$ and $\odot$, such that $(S, \oplus)$ is an Abelian monoid with identity $0_{S}$, $(S, \odot)$ is a monoid with identity $1_{S}$, multiplication is distributive over addition and $0_{S}$ is an absorbing element for multiplication. However, there might not exist inverse elements for $\oplus$ or for $\odot$. In this work we present semirings, their properties, various examples and some examples of applications, in particular in optimization. We concentrate on the semirings of matrices. We define different ranks of matrices over semirings, which in general do not coincide. We know that there are many equivalent definitions of ranks of matrices over the field. These equivalences need not hold for matrix ranks over the semiring. In this work we prove some inequalities among ranks and show by examples that the strict inequalities might apply. We also prove some inequalities that hold for the rank of the sums of two matrices and for the rank of the product of two matrices.

Keywords:semiring, rank, matrix, field, tropical semiring

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back