izpis_h1_title_alt

Schurov komplement : magistrsko delo
ID Mihić, Željka (Author), ID Oblak, Polona (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (508,68 KB)
MD5: 2C9BE7F12BDC8E4D2B8E03EAB6D359D3

Abstract
Na realnih bločnih matrikah definiramo Schurov komplement. Motivacija za definicijo izvira iz sistema linearnih enačb, ki se ga s pomočjo Schurovega komplementa lahko zreducira na reševanje manjšega sistema linearnih enačb. Na več načinov zapišemo inverz matrike, izražen s Schurovim komplementom, ki ga je že leta 1939 zapisal matematik Aitken. Dokažemo kvocientno formulo in izračunamo Schurov komplement vgnezdene matrike. Ogledamo si tudi nekaj lastnosti determinante matrik s pomočjo Schurovega komplementa. Na simetričnih bločnih matrikah dokažemo izrek o pozitivni definitnosti bločne podmatrike in njegovih Schurovih komplementov. S pomočjo Schurovega komplementa izpeljemo tudi razcep Choleskega simetričnih pozitivno definitnih matrik.

Language:Slovenian
Keywords:Schurov komplement, inverz, determinanta, simetrične matrike
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-104457 This link opens in a new window
UDC:512
COBISS.SI-ID:18458457 This link opens in a new window
Publication date in RUL:07.10.2018
Views:2173
Downloads:276
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Schur complement
Abstract:
We define the Schur complement on a block matrix over real numbers. Motivation for the definition comes from the system of linear equations which can be reduced to a smaller system of linear equations by using the Schur complement. We write the inverse matrix which blocks are expressed by Schur complement. Those equalities were established already in 1939 by mathematician Aitken. We prove the quotient property of nested Schur complement. We also investigate the properties of determinants using Schur complement. We develop some properties of positive semidefiniteness of Schur complement of a symmetric matrix. We use Schur complement to construct the Cholesky decomposition of a symmetric positive definite matrix.

Keywords:Schur complement, inverse, determinant, symmetric matrices

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back