Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Schurov komplement : magistrsko delo
ID
Mihić, Željka
(
Author
),
ID
Oblak, Polona
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(508,68 KB)
MD5: 2C9BE7F12BDC8E4D2B8E03EAB6D359D3
Image galllery
Abstract
Na realnih bločnih matrikah definiramo Schurov komplement. Motivacija za definicijo izvira iz sistema linearnih enačb, ki se ga s pomočjo Schurovega komplementa lahko zreducira na reševanje manjšega sistema linearnih enačb. Na več načinov zapišemo inverz matrike, izražen s Schurovim komplementom, ki ga je že leta 1939 zapisal matematik Aitken. Dokažemo kvocientno formulo in izračunamo Schurov komplement vgnezdene matrike. Ogledamo si tudi nekaj lastnosti determinante matrik s pomočjo Schurovega komplementa. Na simetričnih bločnih matrikah dokažemo izrek o pozitivni definitnosti bločne podmatrike in njegovih Schurovih komplementov. S pomočjo Schurovega komplementa izpeljemo tudi razcep Choleskega simetričnih pozitivno definitnih matrik.
Language:
Slovenian
Keywords:
Schurov komplement
,
inverz
,
determinanta
,
simetrične matrike
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-104457
UDC:
512
COBISS.SI-ID:
18458457
Publication date in RUL:
07.10.2018
Views:
2173
Downloads:
276
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Schur complement
Abstract:
We define the Schur complement on a block matrix over real numbers. Motivation for the definition comes from the system of linear equations which can be reduced to a smaller system of linear equations by using the Schur complement. We write the inverse matrix which blocks are expressed by Schur complement. Those equalities were established already in 1939 by mathematician Aitken. We prove the quotient property of nested Schur complement. We also investigate the properties of determinants using Schur complement. We develop some properties of positive semidefiniteness of Schur complement of a symmetric matrix. We use Schur complement to construct the Cholesky decomposition of a symmetric positive definite matrix.
Keywords:
Schur complement
,
inverse
,
determinant
,
symmetric matrices
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back