Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Strojna izvedba konvolucijske nevronske mreže na programirljivem vezju
ID
Ipavec, Domen
(
Author
),
ID
Trost, Andrej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(559,30 KB)
MD5: 6481E82A3D7978EDBAAB8233709DCD45
Image galllery
Abstract
YOLO je algoritem za prepoznavanje in določanje lokacije predmetov na slikah. Za to uporablja konvolucijske nevronske mreže. Je računsko precej zahteven, zato bi radi zanj izkoristili FPGA vezja. V magistrski nalogi je opisana implementacija algoritma v jeziku C++ z uporabo visoko nivojske sinteze. Primerjana sta hitrost algoritma na procesorju ARM in v FPGA vezju. Prav tako so raziskani učinki uporabe različne velikosti podatkovnih tipov za računanje. Z uporabo števil z nepremično decimalno vejico velikosti 24-bitov, ki so optimalna, dosežemo na majhnem FPGA vezju na ZedBoard-u, bistveno hitrejšo implementacijo kot na primerljivem procesorskem sistemu.
Language:
Slovenian
Keywords:
Konvolucijske nevronske mreže
,
YOLO
,
FPGA
,
HLS
Work type:
Master's thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2018
PID:
20.500.12556/RUL-104078
Publication date in RUL:
04.10.2018
Views:
1922
Downloads:
447
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
IPAVEC, Domen, 2018,
Strojna izvedba konvolucijske nevronske mreže na programirljivem vezju
[online]. Master’s thesis. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=104078
Copy citation
Share:
Secondary language
Language:
English
Title:
Hardware implementation of convolutional neural network on programmable device
Abstract:
YOLO is a system for detection and localization of objects in images using convolutional neural networks. It is computationally intensive, so we want to use FPGAs for better performance. This master's thesis describes the implementation of the algorithm in C++ using high level synthesis. The speed of the algorithm is compared between software implementation on ARM processor and the FPGA. The effects of using different data types and sizes on computation are also explored. Using 24 bit fixed point numbers, that are optimal, on the small FPGA chip available on ZedBoard, we can achieve significantly faster implementation than a comparable processor system.
Keywords:
Convolutional neural networks
,
YOLO
,
FPGA
,
HLS
Similar documents
Similar works from RUL:
Long-term object tracking using region proposals
Iris recognition using deep learning
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Segmentacija rok za obogateno resničnost
Siamese neural network for motion detection in video sequences
Similar works from other Slovenian collections:
Convolutional neural networks for sound-based error detection
Food recognition from digital images using convolutional neural networks
Image style transfer using transfer learning and neural networks
Using artificial intelligence for mapping human motion into 3D models
Person activity recognition from image sequence using convolutional neural networks
Back