izpis_h1_title_alt

Metode globokega učenja za biometrično razpoznavanje na podlagi očesa
ID Rot, Peter (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window, ID Štruc, Vitomir (Comentor)

.pdfPDF - Presentation file, Download (12,11 MB)
MD5: B72F482F9363ED02048238F473458B5F

Abstract
Uspešnost biometričnih sistemov, ki razpoznavanjo na podlagi očesnih modalnosti, je kritično odvisna od pogojev zajema slike in od natančnosti postopka segmentacije. Za zmanjšanje napak tovrstnih biometričnih sistemov potrebujemo odporne segmentacijske metode. Šarenica je bila kot biometrična modalnost zaradi visoke razpoznavalne natančnosti v preteklem desetletju deležna velike pozornosti, raziskovalci pa so kot samostojne modalnosti (ali dopolnilne šarenici) predlagali tudi beločnico in periokularno regijo. Z metodami globokega učenja, ki so se na mnogih področjih računalniškega vida izkazale kot najbolj uspešne, v tem delu obravnavamo vsako modalnost posebej (beločnico, periokularni del, šarenico), nato pa s fuzijo vse tri združimo v enoten razpoznavalni cevovod. Glaven poudarek dela je na razpoznavanju iz beločnice, pri katerem i) izdelamo novo podatkovno zbirko SBVPI, ii) predlagamo segmentacijske metode, s katerimi smo dvakrat osvojili prvo mesto na tekmovanjih SS(ER)BC, ter iii) razvijemo in ovrednotimo preostanek cevovoda za razpoznavanje na podlagi beločnice. Predlagamo metodo za večrazredno segmentacijo očesa, s katero dosežemo vzpodbudne rezultate. Nato predlagamo in ovrednotimo cevovod za razpoznavanje na podlagi periokularnega dela, za razpoznavanje na podlagi šarenice pa uporabimo že obstoječ cevovod. Na koncu ovrednotimo še fuzijo vseh treh modalnosti. Z metodami globokega učenja dosežemo obetavne razpoznavalne natančnosti za vsako izmed treh modalnosti. Z združevanjem modalnosti v skupen fuzijski sistem pa razpoznavno natančnost dodatno izboljšamo.

Language:Slovenian
Keywords:globoko učenje, konvolucijske nevronske mreže, beločnica, šarenica, periokularna informacija, segmentacija, razpoznavanje
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-104032 This link opens in a new window
Note:
Univerzitetna Prešernova nagrada / University Prešern Award 2018
Publication date in RUL:02.10.2018
Views:1764
Downloads:487
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
Abstract:
The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities.

Keywords:deep learning, convolutional neural networks, sclera, iris, periocular information, segmentation, recognition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back