Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Krivulje s pitagorejskim hodografom in interpolacija : magistrsko delo
ID
Kramer, Sabina
(
Author
),
ID
Žagar, Emil
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(946,89 KB)
MD5: 4B2AA564210838880C7275963CACC018
Image galllery
Abstract
Na začetku bomo definirali osnovne lastnosti ravninskih parametričnih krivulj, kot so tangenta, ukrivuljenost, normala in paralelna krivulja. Potem se bomo posvetili polinomom v Bernsteinovi bazi. Na podlagi teh polinomov bomo definirali Bézierjeve krivulje in predstavili pomen kontrolnega poligona. Sledila bo interpolacija s kubičnimi Bézierjevimi krivuljami. Definirali bomo krivulje s pitagorejskim hodografom (PH krivulje). Opisali bomo njihove glavne lastnosti in predstavili formule za izračun kontrolnih točk. Nato se bomo ukvarjali z interpolacijo s PH krivuljami stopnje 5. Predstavili bomo kriterij za izbiro najboljše rešitve in konstruirali zlepke, ki jih bomo primerjali s kubičnimi zlepki. Konstruirali bomo paralelne krivulje in predstavili metodo za obrezovanje teh krivulj.
Language:
Slovenian
Keywords:
parametrična krivulja
,
tangentni vektor
,
ukrivljenost
,
paralelna krivulja
,
Bernsteinova baza
,
Bézierjeva krivulja
,
pitagorejski hodograf
,
PH krivulja
,
Hermiteova interpolacija
,
zlepek
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-103997
UDC:
519.6
COBISS.SI-ID:
18459225
Publication date in RUL:
30.09.2018
Views:
2803
Downloads:
500
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KRAMER, Sabina, 2018,
Krivulje s pitagorejskim hodografom in interpolacija : magistrsko delo
[online]. Master’s thesis. [Accessed 10 October 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103997
Copy citation
Share:
Secondary language
Language:
English
Title:
Pythagorean-Hodograph curves and interpolation
Abstract:
We will define basic parametric planar curve properties, like tangent vector, curvature, normal vector and offset. Then, we will describe polynomials in the Bernstein basis and use that concept for defining Bézier curves and control polygon. Interpolation with cubic Bézier will follow. We will define pythagorean-hodograph (PH) curves, describe their main properties and calculate control points. We will interpolate given data with the PH quintics and show a criteria for choosing the best solution. We will construct PH quintic splines and compare them to the ordinary cubic splines. We will finish with constructing offset curves and describe trimming procedure.
Keywords:
parametric curve
,
tangent vector
,
curvature
,
offset curve
,
Bernstein basis
,
Bézier curve
,
pythagorean hodograph
,
PH curve
,
Hermite interpolation
,
spline
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back