izpis_h1_title_alt

Analiza in napovedovanje števila prikazov spletnih kampanj
ID BABIČ, VID (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,63 MB)
MD5: 41FC362CBCD9161D46DFB58BE8802E5D

Abstract
Cilj diplomskega dela je bil pridobiti novo znanje o načinih oglaševanja in lastnostih spletnih kampanj ter napovedovanje števila prikazov kampanje po določenem obdobju trajanja le-te. V prvem delu diplomskega dela smo iz različnih virov zgradili podatkovno množico in podatke analizirali glede na različne lastnosti kampanj (število prikazov, leto aktivnosti, čas trajanja). Ugotovili smo, da obstajajo različni vzorci, predvsem pri analizi po času trajanja. V drugem delu smo preizkusili uspešnost napovedovanja števila prikazov kampanje. Uporabili smo tri različne podatkovne množice, ki so se razlikovale po času, ko začnemo zbirati podatke za napovedovanje. Za napovedovanje smo uporabili pet različnih metod (linearna regresija, regresijsko drevo, naključni gozdovi, metoda podpornih vektorjev, k najbližjih sosedov). Metode smo ocenili s petkratnim prečnim preverjanjem in z različnimi merami uspešnosti.

Language:Slovenian
Keywords:analiza, spletna kampanja, spletno oglaševanje, napovedovanje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103941 This link opens in a new window
Publication date in RUL:28.09.2018
Views:995
Downloads:177
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis and prediction of online campaign impressions
Abstract:
The purpose of the diploma work was to gain new knowledge about the methods of advertising, the characteristics of online campaigns and to predict the number of campaign impressions after a certain period of duration. In the first part of the thesis, we built a data set from different sources and analyzed the data according to different campaign characteristics (number of impressions, year of activity, duration). We discovered different patterns, especially in terms of campaign duration. In the second part, we tested the performance of predicting the number of campaign impressions. We used three data sets that differed by the time we started to collect forecasting data. We used 5-fold cross-validation to evaluate five regression methods (linear regression, regression tree, random forests, support vector machine, k nearest neighbors) for the task.

Keywords:analysis, online campaign, online marketing, prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back