izpis_h1_title_alt

Nevložljivost realne projektivne ravnine v R^3
ID ZAJEC, PATRIK (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,18 MB)
MD5: 1E6A6118D622A6EC4913578BFBE093F1

Abstract
V diplomskem delu predstavimo elementaren dokaz za nevložljivost realne projektivne ravnine v 3-razsežni evklidski prostor ter obravnavamo vložljivost kompaktnih ploskev na splošno. Začnemo s kratko predstavitvijo koncepta idealnih točk iz projektivne geometrije ter podamo nekaj geometričnih predstavitev realne projektivne ravnine, iz katerih izpeljemo pripadajoči topološki model. Podamo nekaj primerov kompaktnih ploskev, med katere spada tudi projektivna ravnina. Nadaljujemo z dokazom klasifikacijskega izreka za kompaktne ploskve, ki pove, da je vsaka orientabilna kompaktna ploskev homeomorfna sferi ali povezani vsoti torusov, vsaka neorientabilna pa povezani vsoti projektivnih ravnin. Vložljivost orientabilnih ploskev sledi iz dejstva, da lahko sfero ali povezano vsoto torusov v prostoru brez težav predstavimo, dokazi za nevložljivost neorientabilnih ploskev pa zahtevajo poznavanje algebraične topologije, kar je običajno izven dosega študija na prvi stopnji. V delu predstavimo elementaren dokaz za nevložljivost projektivne ravnine in Kleinove steklenice, ki sledi iz lastnosti polnega grafa K_6.

Language:Slovenian
Keywords:topologija, klasifikacija ploskev, projektivna ravnina
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103929 This link opens in a new window
Publication date in RUL:28.09.2018
Views:1714
Downloads:234
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Non-embeddability of real projective plane in R^3
Abstract:
The main goal of this thesis is to present the elementary proof for non-embeddability of real projective plane in the 3-dimensional Euclidean space. We start with the short introduction of the ideal points concept and its usage in projective geomery. We continue by briefly describing various geometrical representations of projective plane and give some examples of compact surfaces. Next we prove the classification theorem for compact surfaces. Embeddability of orientable surfaces follows from the classification theorem while proving the non-embeddability of non-orientable surfaces is more complicated and usually requires tools from algebraic topology. We conclude by presenting an elementary proof of the non-embeddability of projective plane and Klein bottle.

Keywords:topology, classification of surfaces, projective plane

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back