izpis_h1_title_alt

Utility representations of preferences: some results : delo diplomskega seminarja
ID Tominc, Julija (Author), ID Bosi, Gianni (Mentor) More about this mentor... This link opens in a new window, ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (253,56 KB)
MD5: CAE2B04AB08CEE9812FE618DFFE0291D

Abstract
The thesis presents some classical results concerning the Utility Theory. We present the requirements that a preorder must satisfy in order to be representable with a utility function while also exploring weaker conditions such as in the case of quasi-preorders. We establish the existence of a utility function, and explore the requirements for its upper semi-continuity in the form of the Rader theorem. Further using the Uryshon-Nachbin approach we present the proofs for both the classical Debreu theorem and the Eilenberg theorem, guaranteeing us the existence of a continuous utility on second countable topological spaces and connected separable topological spaces, respectively.

Language:English
Keywords:utility function, continuity, Nachbin-Uryshon approach, Debreu separability
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103790 This link opens in a new window
UDC:519.8
COBISS.SI-ID:18479449 This link opens in a new window
Publication date in RUL:26.09.2018
Views:1331
Downloads:285
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Funkcija koristnosti in preference: nekaj rezultatov
Abstract:
Delo diplomskega seminarja predstavi nekaj klasičnih rezultatov teorije koristnosti začenši z zahtevami za obstoj funkcije koristnost za totalne binarne relacije. Dodatno predstavimo šibkejše zahteve, ki zadostujejo za obstoj funkcije koristnosti za binarne relacije, ki niso tranzitivne. Nadaljujemo z raziskovanjem zahtev za zveznost funkcije koristnosti na 2-števnem topološkem prostoru v obliki Debreujevega izreka in obstoja zvezne funkcije na povezanem in separabilnem topološkem prostoru, ki je predstavljen z Eilenbergovim izrekom. Izreka dokažemo s pomočjo Nachbinove razširitve Uryshonovega dela.

Keywords:funkcija koristnosti, Nachbin-Uryshon, zveznost, Debreujeva ločljivost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back