izpis_h1_title_alt

Diskretna interpretacija Riemannovega upodobitvenega izreka : delo diplomskega seminarja
ID Kišek, Anja (Author), ID Kuzman, Uroš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,96 MB)
MD5: 76481F94937D3479E597E20273F0032C

Abstract
V diplomskem delu bomo obravnavali diskretno interpretacijo Riemannovega upodobitvenega izreka oziroma alternativni postopek iskanja biholomorfizma med poljubno, pravo, enostavno povezano podmnožico kompleksne ravnine in enotskim diskom. Ta bo temeljil na dejstvu, da konformna preslikava na infinitezimalni ravni krožnice preslika v krožnice. Natančneje, predstavili bomo metodo polnjenja s krožnicami in z njeno pomočjo definirali zaporedje diskretnih preslikav, ki jih bomo zvezno razširili na triangulacijo obeh območij. Izkazalo se bo, da v limiti dobimo biholomorfno preslikavo iz Riemannovega upodobitvenega izreka.

Language:Slovenian
Keywords:konformne preslikave, kvazikonformne preslikave, polnjenje s krožnicami
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103786 This link opens in a new window
UDC:517.5
COBISS.SI-ID:18455641 This link opens in a new window
Publication date in RUL:26.09.2018
Views:1387
Downloads:276
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Discrete Interpretation of The Riemann Mapping Theorem
Abstract:
In this thesis we will observe the Riemann mapping theorem in an alternative way through the theory of discrete analytic functions. The fact that conformal mapping sends infinitesimal circles to circles will be used to construct biholomorphism between non-empty simply connected open subset of the complex plane and the open unit disk. We will describe a method called circle packing, which will help us to define a sequence of discrete mappings which can be continuously extended to a triangulation of both domains. Finally, we will prove that this sequence converges to a conformal mapping, which conicides with the one from the Riemann mapping theorem.

Keywords:conformal mappings, quasiconformal mappings, circle packing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back