Details

Nadomeščanje manjkajočih podatkov : delo diplomskega seminarja
ID Leskovšek, Anja (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (182,70 KB)
MD5: 07319A9ADDD7DE95747F193F652FE1F5
.rR - Appendix, Download (6,28 KB)
MD5: 1A6193047F30088F6BCF325657CF436A
.txtTXT - Appendix, Download (33,06 KB)
MD5: 2BB9184B9CBCE8C6CC955F3EE84D090E

Abstract
V sodobnem svetu so anketni vprašalniki, z namenom ocenjevanja lastnosti ciljne populacije, vedno bolj popularni. Zaradi problema manjkajočih podatkov pa je analiza le-teh lahko problematična. Obstaja veliko metod, s katerimi se spopadamo s problemom manjkanja podatkov. Za praktični del sem se odločila, da uporabim metodo popolnih primerov, deterministično imputacijo in večkratno imputacijo z linearno regresijo. Cilj diplomske naloge je ugotoviti, kako se metode obnašajo na določenem vzorcu podatkov in katera nam da najbolj optimalen rezultat. Zanimalo me je, ali lahko v splošnem določimo boljšo metodo ali je odvisno od celotne zgradbe ankete in odgovorov. Iz rezultatov lahko ugotovimo, da je odvisno tudi od drugih dejavnikov, katera metoda je bolj učinkovita. Pomembno je predhodno znanje teorije, da lahko določimo metodo, ki jo bomo uporabili za določen primer.

Language:Slovenian
Keywords:anketa, metoda, imputacija, ocena, povprečna vrednost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103671 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18472537 This link opens in a new window
Publication date in RUL:21.09.2018
Views:1492
Downloads:442
Metadata:XML DC-XML DC-RDF
:
LESKOVŠEK, Anja, 2018, Nadomeščanje manjkajočih podatkov : delo diplomskega seminarja [online]. Bachelor’s thesis. [Accessed 17 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103671
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Substituting missing data
Abstract:
In modern world, survey questionnaires with the intention of assessing properties of the targeted group of people, are becoming more and more popular. But because of the missing data, the analysis of these surveys might sometimes be problematic. There are many different methods that can help us cope with missing data. For the practical part, I have decided to choose a method of complete-case analysis, single imputation with linear regression and multiple imputation with linear regression. The goal of dissertation is to find out, how different methods work on the certain samples of data, and which method gives us the most optimal result. I was interested if we can generally determine the best method or does it depend on the whole structure of the survey and its answers. From the results we can see that determining the best method also depends on other factors. Beforehand knowledge of the theory is important to determine which method will be used for certain examples.

Keywords:survey, method, imputation, evaluation, average

Similar documents

Similar works from RUL:
  1. Problems of replacing missing tiles in a mosaic from the City Savings Bank of Ljubljana
  2. Addressing Missing Data in Quantitative Social Research - EHIS example
  3. Vpliv manjkajočih podatkov na analize raziskav v Podjetju X
  4. Metoda glavnih komponent in manjkajoči podatki
  5. Impact of missing values on the modeling of air pollution
Similar works from other Slovenian collections:
  1. Oskrba posameznega zoba in nadomeščanje manjkajočih zob
  2. Zdravstveno negovalna obravnava pacienta z arterijsko hipertenzijo v ambulanti družinske medicine
  3. The balance of assessments on matura examination
  4. SUBSTITUTING THE SELF-EMPLOYED DURING THE LONG LEAVE OF ABSENCE
  5. Urejanje grobov kot tržna storitev

Back