# Največja večkratnost lastnih vrednosti grafa in njegove prisilne ničle : delo diplomskega seminarja
Dolenc, Peter (Author), Oblak, Polona (Mentor) More about this mentor...  PDF - Presentation file, Download (388,99 KB)MD5: B0C473374D78204CBA79E3D27748BA69

Abstract
V delu enostavnim grafom na končni množici vozlišč priredimo množico simetričnih realnih matrik, ki imajo neničeln element na mestu $(i,j)$ natanko tedaj, ko $i \ne j$ in v grafu $G$ obstaja povezava med vozliščema $i$ in $j$. Največjo večkratnost lastnih vrednosti grafa definiramo kot največjo možno večkratnost lastnih vrednosti iz pripadajoče množice matrik. Ta parameter označimo z $M(G)$. V delu definiramo tudi parameter $Z(G)$ iz grafa $G$ in pokažemo, da za vsak enostaven graf $G$ velja $M(G) \leq Z(G)$. Podrobneje študiramo grafe s prereznimi vozlišči in si ogledamo obnašanje parametrov $M(G)$ in $Z(G)$ za takšne grafe.

Language: Slovenian simetrične matrike, večkratnost lastne vrednosti, prisilne ničle grafa, širitev ranga, ničelna širitev, induciran podgraf, prerezno vozlišče Final seminar paper (mb14) 2.11 - Undergraduate Thesis FMF - Faculty of Mathematics and Physics 2018 519.17 18478937 465 252    (0 votes) Voting is allowed only to logged in users. AddThis uses cookies that require your consent. Edit consent...

## Secondary language

Language: English Maximum multiplicity of eigenvalues of a graph and it's zero forcing sets For any simple graph with finite set of verticies we assign a set of real symmetric matrices, whose $(i,j)$th entry is non-zero whenever $i \ne j$ and $\{i,j\}$ is an edge in $G$. We define maximum multiplicity of eigenvalues of a graph to be the largest possible multiplicity of eigenvalues of matrices in that set. We denote this parameter by $M(G)$. We also define parameter $Z(G)$ and show that for any simple graph $G$, $M(G)\leq Z(G)$. We take a closer look at graphs with cut-vertices and study parameters $M(G)$ and $Z(G)$ for these graphs. symmetric matrices, multiplicity of an eigenvalue, zero forcing set, rank spread, zero spread, induced subgraph, cut-vertex

## Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
 0 - 0 / 0 There are no comments!

Back