Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Strojno učenje : vrednotenje v zavarovalništvu : magistrsko delo
ID
Erker, Matevž
(
Author
),
ID
Košir, Tomaž
(
Mentor
)
More about this mentor...
,
ID
Todorovski, Ljupčo
(
Comentor
)
PDF - Presentation file,
Download
(2,86 MB)
MD5: 5F7B3065D422C6AA71060A26FA69CCC3
Image galllery
Abstract
V magistrskem delu si bomo pogledali posplošeni linearni model in njegove predpostavke. Kot že samo ime pove, je posplošeni linearni model posplošitev linearnega modela. Najpomembnejša posplošitev je predpostavka, da slučajna spremenljivka ni nujno porazdeljena normalno, ampak spada v družino eksponentnih porazdelitvenih funkcij. V drugem delu magistrskega dela se bomo posvetili strojnemu učenju in primerjanju metod strojnega učenja s posplošenim linearnim modelom. Kot vemo, se nahajamo v dobi podatkov. Edina rešitev za procesiranje in iskanje smisla v ogromni količini podatkov, ki je na voljo, je strojno učenje in podatkovno rudarjenje. Znanstveniki pravijo, da nekatere metode strojnega učenja posnemajo odločanje posameznikov. Tema tega magistrskega dela je tako poskus menjave posplošenega linearnega modela z modeli strojnega učenja. Pogledali si bomo, kako zgradimo odločitvena drevesa in kakšne parametre imamo, kako so zgrajene umetne nevronske mreže in njihovo povezavo z biološkimi nevronskimi mrežami ter kako se pri strojnem učenju odločamo za najboljši model. Na koncu je podan tudi primer izračuna štirih modelov (odločitveno drevo, naključni gozd, nevronske mreže in kaskadni model) ter primerjava s posplošenim linearnim modelom v programskem jeziku R.
Language:
Slovenian
Keywords:
posplošeni linearni model
,
strojno učenje
,
rudarjenje podatkov
,
prečno preverjanje
,
odločitvena drevesa
,
naključni gozdovi
,
nevronske mreže
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-103569
UDC:
519.2
COBISS.SI-ID:
18443097
Publication date in RUL:
20.09.2018
Views:
2585
Downloads:
513
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ERKER, Matevž, 2018,
Strojno učenje : vrednotenje v zavarovalništvu : magistrsko delo
[online]. Master’s thesis. [Accessed 26 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103569
Copy citation
Share:
Secondary language
Language:
English
Title:
Machine learning : pricing in actuarial science
Abstract:
In the master's thesis we will examine the Generalized Linear Model (GLM) and its assumptions. As the name already implies, the GLM is a generalization of the linear model. The most important generalization is the assumption that the random variable is not necessarily distributed normally but belongs to the family of exponential distribution functions. In the second part of the master's thesis, we will look at machine learning and compare the methods of machine learning with GLM. As we know, we are living in the era of data. The only solution for processing and making sense of the vast amount of available data, is machine learning and data mining. Scientists say that some methods of machine learning mimic the decision-making of humans. The theme of this master's thesis is thus an attempt to replace GLM with one of the machine learning methods. We will look at how we can build decision trees and what parameters we have, how artificial neural networks are built, how they are related to biological neural networks, and how we can choose the best model in machine learning. Finally, an example of the calculation of four models (decision tree, random forest, neural networks and cascade model) as well as a comparison of these models with GLM in programming language R is presented.
Keywords:
generalized linear model
,
Machine learning
,
Data mining
,
cross-validation
,
decision tree
,
random forest
,
neural netwoks
Similar documents
Similar works from RUL:
Neural machine translation of literary texts from English to Slovene
Domain specific adaptation of a statistical machine translation engine in Slovene language
Lexical diversity in statistical and neural machine translation
Evaluation of a machine translation system for lectures
Comprehending the neural language: How people understand the language of machine translation engines
Similar works from other Slovenian collections:
Analysis of online machine translation services
Tuning parameters in statistical machine translation
ǂThe ǂrole of translation software-case study of slovenian-german glossary of computer terms
Overview of free machine translation systems
Applicability and challenges of using machine translation in translator training
Back