Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Prenos slikarskega stila s pomočjo globokih nevronskih mrež
ID
RAKITA, ALJOŠA
(
Author
),
ID
Solina, Franc
(
Mentor
)
More about this mentor...
,
ID
Batagelj, Borut
(
Comentor
)
PDF - Presentation file,
Download
(16,28 MB)
MD5: 6DF3FE743CA18DB5F8279AF211C3409A
Image galllery
Abstract
V tej diplomski nalogi, je najprej razloženo kaj so sploh globoke nevronske mreže in kratka razlaga njihovega delovanja. Nato je nekaj besed nemenjenih temu kako je stil slike definiran in kaj vse predstavlja. Po tem, je natančno razloženo in analizirano delovanje specifične metode za prenos stila izbrane slike na ciljno sliko s pomočjo globokih nevronskih mrež. Temu sledi demonstracija delovanja, kjer smo naredili "lažne" slike s pomočjo stila znanih slovenskih impresionistov. Zaključili pa smo s spletno anketo, ki je preverila kako realne so producirane slike, to je ali so naključno izbrani ljudje sposobni ločiti tako generirane "lažne" slike od pravih slik slovenskih impresionistov.
Language:
Slovenian
Keywords:
prenos stila
,
globoke nevronske mreže
,
analiza
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-103536
Publication date in RUL:
19.09.2018
Views:
2118
Downloads:
231
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
RAKITA, ALJOŠA, 2018,
Prenos slikarskega stila s pomočjo globokih nevronskih mrež
[online]. Bachelor’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103536
Copy citation
Share:
Secondary language
Language:
English
Title:
Painting style transfer with deep neural networks
Abstract:
What are deep neural networks and how they work is explained first in this diploma thesis. Next, we describe what is a painting style and what determines the style. With deep neural networks one can transfer the painting style from a selected source image to another target image. We demonstrate style transfer by making ``fake’’ pictures using paintings of Slovene impressionist painters. At the end we made a web survey to find out, if randomly selected people could distinguish such ``fake’’ pictures from the real painting of slovenian impressionists.
Keywords:
style transfer
,
deep neural network
,
analysis
Similar documents
Similar works from RUL:
effect of strain rate on mechanical properties of PK11SP steel microalloyed with titanium
ǂthe ǂinfluence of deformation degree on mechanical properties of cold drawn PT929 steel
influence of scrap revert type on mechanical properties of AlSi10Mg(Fe) alloy
effect of recycled material on mechanical properties of polypropylene
influence of cooling rate and nucleation potential on mechanical properties of AlSi9Cu3
Similar works from other Slovenian collections:
Vpliv gostote na mehanske lastnosti jekla, proizvedenega s prškasto metalurgijo
Tensile test models for low-carbon microalloyed steels with high niobium contents
ǂThe ǂInfluence of mechanical properties of steel pressure vessels on crack appearance at tensile loading
Effect of fiber-layer positions on mechanical properties of carbon fiber reinforced materials manufactured by fused deposition modeling
Mechanical properties of a welded joint welded by a highly productive arc process
Back