Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detekcija napak na materialih s periodično strukturo
ID
KRUPIĆ, BILAL
(
Author
),
ID
Perš, Janez
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(10,45 MB)
MD5: 51051A1EDDA7B2FE5A19AEC6C15F4C71
Image galllery
Abstract
Razvili smo metodo strojnega vida, ki bi naj bila sposobna detektirati napake v materilalih, ki iskazujejo periodično strukturo. Metoda temelji na dvodimenzionalni Fourierjevi transformaciji. Naša osnovna predpostavka je, da pri Fourierjevi transformaciji slike vzorca, ki izkazuje periodično strukturo, dobimo veliko število vrhov, in majhno število vrhov, ko vzorec vsebuje napako. Vrhovi so zaznani z detektorjem MSER. Izhod detektorja MSER je število vrhov. Kot primer smo uporabili vzorce tekstila, v katere smo vnesli napake (cefranje, zbadanje, rezanje). Zajeli smo sistematično bazo slik, ter napake na tekstilnih vzorcih označili z zaključenimi poligoni. Na vsakem zaključenem poligonu smo izračunali očrtan pravokotnik, ki je bil vodilo, za izrez vsakega od vzorcev, ki smo jih uporabili za potrebe binarnega razvrščanja vzorcev na tiste brez napake in z napako. Za detekcijo napak smo kvalitativno ilustrirali delovanje detektorja napak, ki uporablja predstavljen razvrščevalnik ter metodo drsečega okna.
Language:
Slovenian
Keywords:
strojni vid
,
računalniški vid
,
tekstil
,
razvrščevanje
,
detekcija napak
Work type:
Bachelor thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2018
PID:
20.500.12556/RUL-103535
Publication date in RUL:
19.09.2018
Views:
1238
Downloads:
269
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KRUPIĆ, BILAL, 2018,
Detekcija napak na materialih s periodično strukturo
[online]. Bachelor’s thesis. [Accessed 23 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103535
Copy citation
Share:
Secondary language
Language:
English
Title:
Detecting Defects in Materials That Exhibit Periodic Structure
Abstract:
We have developed a machine vision method that will be able to detect errors in materials that show a periodic structure. The method is based on a two-dimensional Fourier transform. Our basic assumption is that the Fourier transformation of the image that exhibits a periodic structure results in a pattern which contains a large number of peaks. Conversely, it contains a small number of peaks when the sample contains a defect, which disrupts the periodic structure. The peaks are detected by the MSER detector. The output of the MSER detector is the number of peaks. To illustrate and evaluate the proposed method, we used textile samples in which we created defects (tearing, puncturing, cutting). We systematically collected a database of images, and marked the defects in textile patterns as polygons. For each polygon we calculated the bounding box that was used in sample extraction from images. Samples were classified to those without defect and those containing a defect. For the detection of defects, we have qualitatively illustrated the operation of the error detector using the presented classifier and the sliding window method.
Keywords:
machine vision
,
computer vision
,
textile
,
classification
,
defect detection
Similar documents
Similar works from RUL:
A system for visual control of wood imperfections
Detection of surface defects on highly glossy objects
Quality control of automotive catalysts assembly with machine vision
Recognising people’s age from face images with convolutional neural networks
Face recognition using Alapha-Gamma descriptor
Similar works from other Slovenian collections:
Machine vision system for surface inspection
THE SYSTEM FOR PRODUCT CLASSIFICATION BASED ON THE DETECTION OF THREADING PRESENCE WITH USB CAMERA
Quality control of products using computer vision
Back