Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Strojno učenje obnašanja inteligentnih agentov v računalniških igrah
ID
Penca, David
(
Author
),
ID
Bosnić, Zoran
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(6,79 MB)
MD5: 93DDC2CADF6FBC7B51BE373E84B0227F
Image galllery
Abstract
V diplomskem delu predstavljamo pristop programiranja igralcev v večigralskih spletnih igrah, ki temelji na metodah strojnega učenja. Pokazati želimo, da lahko posameznim likom določimo poteze, ki jih lahko izvajajo, jim podamo informacije o njihovem okolju in jih prepustimo, da si na podlagi bojev s človeškimi igralci ustvarijo igralno taktiko. Pristopi, ki temeljijo na sprotnem strojnem učenju taktik likov, lahko zmanjšajo čas, porabljen za programiranje, hkrati pa omogočajo prilagajanje nasprotnikov taktikam igralcev brez dodatnega dela programerjev. Tako dobimo igralce, ki se čez čas izboljšujejo in so robustni na izkoriščanje uveljavljenih taktik s strani človeškega igralca. Osredotočili smo se na spodbujevano učenje in na evolucijske algoritme, saj sta oba pristopa primerna za sisteme, ki se učijo na podlagi številnih interakcij s človeškimi nasprotniki. Naše rešitve smo implementirali v igralnem pogonu Unreal Engine 4.
Language:
Slovenian
Keywords:
strojno učenje
,
Q-učenje
,
genetski algoritmi
,
računalniške igre
,
inteligentni agenti
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-103413
Publication date in RUL:
17.09.2018
Views:
1652
Downloads:
366
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PENCA, David, 2018,
Strojno učenje obnašanja inteligentnih agentov v računalniških igrah
[online]. Bachelor’s thesis. [Accessed 24 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103413
Copy citation
Share:
Secondary language
Language:
English
Title:
Machine learning of character behavior in computer games
Abstract:
In our thesis we present an approach for programming enemy characters in online multiplayer games that is based on machine learning algorithms. We wish to demonstrate, that it is possible to specify the available actions for specific characters, implement sensing of their environment and let them learn the tactics on their own, by fighting human players. Approaches based on machine learning have the potential to reduce the time needed for programming as well as enable the characters to adapt to current player tactics, without any additional programming. By using such programming methods we are able to create characters which get better over time and are not vulnerable to exploitation of established tactics by the players. We have focused mainly on reinforcement learning and evolutionary algorithms, because both approaches are suitable for use in systems that learn from numerous interactions with human players. We have implemented our prototype in the Unreal Engine 4 game engine.
Keywords:
machine learning
,
Q-learning
,
genetic algorithms
,
computer games
,
inteligent agents
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back