izpis_h1_title_alt

Strojno učenje obnašanja inteligentnih agentov v računalniških igrah
ID Penca, David (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,79 MB)
MD5: 93DDC2CADF6FBC7B51BE373E84B0227F

Abstract
V diplomskem delu predstavljamo pristop programiranja igralcev v večigralskih spletnih igrah, ki temelji na metodah strojnega učenja. Pokazati želimo, da lahko posameznim likom določimo poteze, ki jih lahko izvajajo, jim podamo informacije o njihovem okolju in jih prepustimo, da si na podlagi bojev s človeškimi igralci ustvarijo igralno taktiko. Pristopi, ki temeljijo na sprotnem strojnem učenju taktik likov, lahko zmanjšajo čas, porabljen za programiranje, hkrati pa omogočajo prilagajanje nasprotnikov taktikam igralcev brez dodatnega dela programerjev. Tako dobimo igralce, ki se čez čas izboljšujejo in so robustni na izkoriščanje uveljavljenih taktik s strani človeškega igralca. Osredotočili smo se na spodbujevano učenje in na evolucijske algoritme, saj sta oba pristopa primerna za sisteme, ki se učijo na podlagi številnih interakcij s človeškimi nasprotniki. Naše rešitve smo implementirali v igralnem pogonu Unreal Engine 4.

Language:Slovenian
Keywords:strojno učenje, Q-učenje, genetski algoritmi, računalniške igre, inteligentni agenti
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103413 This link opens in a new window
Publication date in RUL:17.09.2018
Views:1459
Downloads:354
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine learning of character behavior in computer games
Abstract:
In our thesis we present an approach for programming enemy characters in online multiplayer games that is based on machine learning algorithms. We wish to demonstrate, that it is possible to specify the available actions for specific characters, implement sensing of their environment and let them learn the tactics on their own, by fighting human players. Approaches based on machine learning have the potential to reduce the time needed for programming as well as enable the characters to adapt to current player tactics, without any additional programming. By using such programming methods we are able to create characters which get better over time and are not vulnerable to exploitation of established tactics by the players. We have focused mainly on reinforcement learning and evolutionary algorithms, because both approaches are suitable for use in systems that learn from numerous interactions with human players. We have implemented our prototype in the Unreal Engine 4 game engine.

Keywords:machine learning, Q-learning, genetic algorithms, computer games, inteligent agents

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back