Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Uporabnost in učinkovitost kanoničnega genetskega algoritma : delo diplomskega seminarja
ID
Žumer, Gaja
(
Author
),
ID
Knez, Marjetka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,39 MB)
MD5: 32E2F51EE4177512EDD41F63F0423C9D
M - Appendix,
Download
(1,15 KB)
MD5: 3CB9E4480E7481CE521573108C589096
M - Appendix,
Download
(2,65 KB)
MD5: A7B8C2F7D98C0AA024A3D3723E0A0805
This document has even more files. Complete list of files is available
below
.
Image galllery
Abstract
Genetski algoritem je stohastična optimizacijska metoda za reševanje zahtevnejših oziroma slabše obvladljivih optimizacijskih problemov. V diplomski nalogi je najprej opisana njegova implementacija, sledeči primeri pa opozarjajo na pasti, ki se lahko pri tem pojavijo. Pri iskanju rezultata genetski algoritem preiskuje območja, za katera je bolj verjetno, da bodo vsebovala globalno optimalno rešitev. O tem govori izrek o shemah, ki nakazuje na mehanizem napredovanja algoritma, ne moremo pa ga uporabiti za analizo konvergence. V ta namen potrebujemo teorijo končnih homogenih markovskih verig. Dokazano je, da kanonični algoritem na splošno ne konvergira h globalni rešitvi, kar pa ne velja za njegovi različici, kjer se na vsakem koraku ohranja najboljša najdena rešitev. V prvem primeru je dokazana konvergenca elitnega genetskega algoritma, pri čemer so matrike operatorjev križanja ($K$), selekcije ($S$) in mutacije ($M$) stohastične matrike. Poleg tega za matriko $M$ dodatno velja, da je pozitivna, matrika $S$ pa mora biti stolpično dopustna. Izkaže se, da so zadostni pogoji za konvergenco elitnega genetskega algoritma milejši od prej omenjenih. Matrike $K$, $S$ in $M$ morajo biti še vedno stohastične in imeti pozitivne vrednosti na glavni diagonali, matrika M pa mora biti ireducibilna.
Language:
Slovenian
Keywords:
kanonični genetski algoritem
,
konvergenca
,
markovske verige
,
izrek o shemah
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2018
PID:
20.500.12556/RUL-103244
UDC:
519.2
COBISS.SI-ID:
18434905
Publication date in RUL:
15.09.2018
Views:
1280
Downloads:
923
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Applicability and efficiency of the canonical genetic algorithm
Abstract:
Genetic algorithm is a stochastic optimisation method for solving difficult optimisation problems. This bachelor's thesis first discusses its implementation, followed by examples indicating the inconveniences which may appear when dealing with putting genetic algorithm into practise. When searching for the best solution, genetic algorithm inspects areas with the higher probability of containing a globally optimal solution. Schema theorem tries to explain the mechanics behind genetic algorithm, but it cannot be used for the analysis of its convergence properties. For this purpose, finite homogeneous Markov chains need to be applied. It is proven that canonical genetic algorithm does not converge to the global optimum, which does not hold for two of its variants maintaining the best solution found over time, without using it to generate new individuals. The first example shows a proof of convergence of an elitist genetic algorithm, where the matrices of crossover operator $K$, selection operator $S$ and mutation operator $M$ are stochastic matrices. Additionaly, matrix $M$ has to be positive and matrix $S$ has to be column allowable. It turns out, as stated in the second proof of convergence, that the sufficient conditions for convergence are not as harsh as mentioned previously. Matrices $K$, $S$ and $M$ have to be stochastic and diagonal-positive, while matrix $M$ has to be irreducible as well.
Keywords:
canonical genetic algorithm
,
convergence
,
Markov chains
,
schema theorem
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Files
Loading...
Back