izpis_h1_title_alt

Klasifikacija raziskovalnih del s področja strojništva z metodo strojnega učenja
ID Jeršin, Matevž (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window, ID Butala, Peter (Comentor)

.pdfPDF - Presentation file, Download (2,76 MB)
MD5: 0153948481953EED565B4B371C790256

Abstract
Strojno učenje se vedno bolj uporablja v vseh vedah, tudi v strojništvu V nalogi je predstavljen algoritem strojnega učenja za klasificiranje znanstvenih in strokovnih besedil. Razložena je tudi priprava besedila pred klasificiranjem, kar je zelo pomembno za končno uspešnost algoritma. Besedila, ki smo jih dobili na spletišču COBISS so uporabljena v nalogi so znanstveni članki, katerih soavtorji so zaposleni na Fakulteti za strojništvo, Univerze v Ljubljani. Članke smo klasificirali v deset kategorij iz akademije za proizvodnjo inženirstvo – CIRP. Predstavljene so bile najbolj pogoste izbire kategorij, v katerih so pisali avtorji in katere besede so se največkrat pojavljale.

Language:Slovenian
Keywords:strojno učenje, klasifikacija besedila, spletno strganje podatkov, podatkovno rudarjenje, python
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Publisher:[M. Jeršin]
Year:2018
PID:20.500.12556/RUL-102940 This link opens in a new window
UDC:004.85:519.2(043.2)
COBISS.SI-ID:16401947 This link opens in a new window
Publication date in RUL:12.09.2018
Views:1626
Downloads:338
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Classification of research publications from the domain of mechanical engineering using machine learning
Abstract:
Machine learning is getting more and more used nowadays, also in mechanical engineering. This thesis presents algorithm of research publications text classification using machine learning. It is shown the preparation of text step by step, which is very important before the actual classification because of the later performance of the algorithm. Texts used in this algorithm are research publications, which co-authors are employees in Faculty of mechanical engineering, University of Ljubljana. We classified the publications into ten different classes from the international academy for production engineering – CIRP. The most common used categories and most used words are shown and presented.

Keywords:machine learning, text classification, web scraping, data mining, python

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back