izpis_h1_title_alt

Implementacija in razširitve metode SCITE za bayesovsko modeliranje mutacijskih dreves
ID KOLAR, LUKA (Author), ID Štrumbelj, Erik (Mentor) More about this mentor... This link opens in a new window, ID Zupan, Blaž (Comentor)

.pdfPDF - Presentation file, Download (1,40 MB)
MD5: 766D1421D06319B242111D78CD3D0E26

Abstract
Metoda SCITE lahko rekonstruira potek razvoja rakavih obolenj v celicah iz podatkov o njihovih mutacijah. Potek razvoja predstavi z mutacijskim drevesom, ki je sorodno filogenetskemu drevesu. V diplomski nalogi implementiramo del funkcionalnosti metode v programskem jeziku Python in zagotovimo primerljivo hitrost delovanja. Osredotočimo se na pridobitev aposteriornih porazdelitev mutacijskih dreves ter verjetnosti nezaznanih mutacij v celicah. Metodo izboljšamo z delnim ocenjevanjem mutacijskih dreves, ki omogoča hitrejše ocenjevanje. Poleg obstoječih premikov mutacijskih dreves predlagamo nov premik in na več podatkovnih množicah utemeljimo njegovo uporabnost. Nazadnje uporabniku omogočimo izračun efektivnega števila vzorcev, s katerim lahko bolje ovrednoti rezultate izvajanja algoritma.

Language:Slovenian
Keywords:mutacijska drevesa, rakava obolenja, algoritem Metropolis-Hastings, metoda SCITE
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-102762 This link opens in a new window
Publication date in RUL:07.09.2018
Views:1171
Downloads:298
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation and extensions of the SCITE method for Bayesian modelling of mutation trees
Abstract:
SCITE method can reconstruct the course of development of cancer in cells from data on their mutations. The course of development is represented with a mutation tree, which is similar to a phylogenetic tree. In the thesis, we implement some functionalities of the SCITE method with the Python programming language and ensure comparable execution time. We focus on the posterior distributions of mutation trees and the probabilities of overlooked mutations in cells. The method is improved with the introduction of partial mutation tree scoring which speeds up the scoring process. Along the existing tree moves we propose a new tree move and prove its usefulness on multiple datasets. Lastly, we enable the user to compute the effective sample size of posterior samples and thus enable better assessment of the results of the algorithm.

Keywords:mutation trees, cancer, Metropolis-Hastings algorithm, SCITE method

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back