Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Navidezno pomerjanje frizur s postopki računalniškega vida
ID
Lipovšek, Jan
(
Author
),
ID
Štruc, Vitomir
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,34 MB)
MD5: 541D5DF3CA59E89D2E63C2F5E3E8B984
Image galllery
Abstract
V delu je predstavljena aplikacija za navidezno pomerjanje frizur s postopki računalniškega vida. Delo predstavlja problem navideznega pomerjanja frizur z uporabo dveh različnih metod segmentacije, ki vhodno sliko osebe razdelita v tri semantična področja (lase, obraz in ozadje), ter dveh metod vrisovanja, ki na sliki po zamenjavi frizur smiselno zapolnita luknje. Na podatkovni zbirki LFW smo naučili in ovrednotili dve globoki segmenta- cijski nevronski mreži FCN-8s in U-Net. Rezultati kažejo, da je za namen se- gmentacije las bolj primerna mreža U-Net, z natančnostjo po slikovnih elementih 0.910 v primerjavi z natančnostjo 0.902, ki jo je dosegla mreža FCN-8s. Izračun F-mere prav tako potrdi zgornjo trditev. Za vrisovanje smo preizkusili globoko generativno nevronsko omrežje in postopek Telea, ki temelji na polnjenju lukenj glede na vrednosti okoliških slikovnih pik. S povprečno oceno 4.214 pri testih s človeškimi ocenjevalci, v primerjavi s 3.429, se je za namen vrisovanja bolje izkazala metoda Telea. Poglavje 1 predstavi uvod v delo. Poglavje 2 predstavi teoretično ozadje za delom, ter pregled podobnih aplikacij. V poglavju 3 so opisane uporabljene metode. Poglavje 4 poda rezultate segmentacije, normalizacije, združevanja slik in vrisovanja, ter ovrednotenje zgornjih rezultatov. Zaključki pa so podani v poglavju 5.
Language:
Slovenian
Keywords:
globoko učenje
,
računalniški vid
,
konvolucijske nevronske mreže
,
navidezno pomerjanje frizur
Work type:
Bachelor thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2018
PID:
20.500.12556/RUL-102745
Publication date in RUL:
07.09.2018
Views:
2623
Downloads:
223
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
LIPOVŠEK, Jan, 2018,
Navidezno pomerjanje frizur s postopki računalniškega vida
[online]. Bachelor’s thesis. [Accessed 21 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=102745
Copy citation
Share:
Secondary language
Language:
English
Title:
Virtual hair makeover using computer vision tools
Abstract:
The thesis presents an application designed to virtually fit different hairstyles to an image using computer vision tools. It uses two methods of segmentation, which divide the input image into three separate semantic regions (hair, face and background) and two methods of inpainting, which fill the holes left in the process of combining hair with faces. The neural networks FCN-8s and U-Net used in this work, are trained and validated on the LFW dataset. The results indicate, that U-Net outperforms FCN-8s in hair segmentation tasks, where it achieved a higher average per-pixel accuracy of 0.910, where FCN-8s’ average per-pixel accuracy was 0.902, respectively. The F-score results, where U-Net achieved better accuracy across all classes, further confirms the previous observations. We used a deep generative neural network and the Thelea method, which fills holes according to its neighboring pixels, for inpainting. The Thelea method achieved a slightly better average score of 4.214 in the human rating test, as opposed to 3.429 of the deep generative neural network. Chapter 1 provides an introduction to the thesis. The first part of Chapter 2 presents a short overview of the fundamental elements in deep learning, whereas the second part explores related work. Chapter 3 explains the methodology behind the application. Chapter 4 presents the results, and validates the segmentation and inpainting methods. Chapter 5 presents the conclusion and further work.
Keywords:
deep learning
,
computer vision
,
convolutional neural networks
,
hair
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back