Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Nelinearne metode redukcije modelov v dinamiki podstruktur
ID
Pogačar, Miha
(
Author
),
ID
Čepon, Gregor
(
Mentor
)
More about this mentor...
,
ID
Boltežar, Miha
(
Comentor
)
PDF - Presentation file,
Download
(7,03 MB)
MD5: 9ADED62279EB55645A47A16183D3AB05
Image galllery
Abstract
Dinamska analiza kompleksnih struktur je računsko zahtevna, zato se poslužujemo delitve strukture na več podstruktur. Vsako izmed podstruktur analiziramo ločeno in z metodami redukcije zmanjšamo število njenih prostostnih stopenj, nato pa podstrukture sklopimo v celoto, kar omogoča hitrejšo analizo. V prvem delu magistrske naloge je predstavljena geometrijsko linearna formulacija končnega elementa ter Craig–Bamptonova in Rubinova metoda redukcije modelov. V drugem delu magistrske naloge je formulacija končnega elementa razširjena z nelinearno zvezo med pomiki in deformacijami, kar predstavlja geometrijsko nelinearnost. Zaradi nelinearnosti sistema je potrebna tudi nadgradnja redukcijske metode. Dinamski odziv smo izračunali z uporabo analitičnih enačb, analizo celotne strukture z metodo končnih elementov in uporabo redukcijskih metod. V izbranem frekvenčnem območju smo pokazali dobro ujemanje.
Language:
Slovenian
Keywords:
dinamika geometrijska nelinearnost metoda končnih elementov podstrukturiranje redukcija modelov
Work type:
Master's thesis
Typology:
2.09 - Master's Thesis
Organization:
FS - Faculty of Mechanical Engineering
Publisher:
[M. Pogačar]
Year:
2018
PID:
20.500.12556/RUL-102520
UDC:
519.6:531/533(043.2)
COBISS.SI-ID:
16391451
Publication date in RUL:
01.09.2018
Views:
2271
Downloads:
432
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
POGAČAR, Miha, 2018,
Nelinearne metode redukcije modelov v dinamiki podstruktur
[online]. Master’s thesis. M. Pogačar. [Accessed 22 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=102520
Copy citation
Share:
Secondary language
Language:
English
Title:
Nonlinear Model Reduction in Dynamic Substructuring
Abstract:
Dynamic analysis of complex structures can be very demanding, therefore such structures are being divided into several substructures. Each of the substructures is analysed separately and the number of degrees of freedom is reduced using model order reduction methods. Then the initial structure is obtained by assembly of the reduced substructures, providing faster analysis. In the first part of the dissertation geometrically linear formulation of the finite element and Craig–Bampton model reduction method is presented. In the second part of the dissertation the finite element formulation is upgraded using nonlinear displacement – deformation relations. Due to the geometrical nonlinearity of the system also reduction methods have to be upgraded. The comparison of the beam dynamic responses, obtained by analytical equations, finite element analysis of the complete structure and use of model reduction method indicates good correspondence within the selected frequency interval.
Keywords:
dynamics geometrical nonlinearity finite element method substructuring model reduction
Similar documents
Similar works from RUL:
Virtual hair makeover using computer vision tools
Object detection and classification in aquatic environment using convolutional neural networks
Melt pool detection at wire arc welding
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Long-term object tracking using region proposals
Similar works from other Slovenian collections:
Person age estimation based on digital images using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Image style transfer using transfer learning and neural networks
Person activity recognition from image sequence using convolutional neural networks
Time series classification based on convolutional neural networks
Back