Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Identifikacija napak na ležajih s pomočjo paketa za strojno učenje scikit-learn
ID
Kubelj, Klemen
(
Author
),
ID
Slavič, Janko
(
Mentor
)
More about this mentor...
,
ID
Boltežar, Miha
(
Comentor
)
PDF - Presentation file,
Download
(3,41 MB)
MD5: 7DC8F711CEADC6BEF6BE5A57F1936A5E
Image galllery
Abstract
Osrednji problem in področje raziskovanja tega dela je strojno učenje kot pripomoček za ugotavljanje napak na strojnih elementih. V prvem delu je obravnavana raziskava, iz katere so pridobljeni surovi podatki in njihova pred-obdelava v ustrezno obliko. V omenjeni raziskavi se opazuje 5 različnih napak na ležajih: aksialna in radialna preobremenitev, preobremenitev upogibnega momenta, kontaminacija in napaka kletke. V naslednjih sklopih so predstavljene teoretične osnove strojnega učenja, algoritmi za uspešno analizo ter primeri uporabe na konkretnih podatkih. Kot pomemben del raziščemo tudi optimizacijo parametrov pri različnih modelih in obravnavamo korektnost dobljenih rezultatov.
Language:
Slovenian
Keywords:
strojno učenje
,
umetna inteligenca
,
kakovost
,
ležaj
,
Python
,
scikit-learn
,
sklearn
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FS - Faculty of Mechanical Engineering
Publisher:
[K. Kubelj]
Year:
2018
PID:
20.500.12556/RUL-102471
UDC:
004.85:621.82(043.2)
COBISS.SI-ID:
16251931
Publication date in RUL:
31.08.2018
Views:
1699
Downloads:
537
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KUBELJ, Klemen, 2018,
Identifikacija napak na ležajih s pomočjo paketa za strojno učenje scikit-learn
[online]. Bachelor’s thesis. K. Kubelj. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=102471
Copy citation
Share:
Secondary language
Language:
English
Title:
identification of bearing faults with machine learning packet scikit-learn
Abstract:
The main focus and research field of this work is machine learning as a tool for classifying faults of machine elements. In the first part, we address the research, from which we take the raw data and the preprocessing of the gathered data set. The research takes a look at 5 different bearing faults: axial and radial overload, bending moment, contamination and shield defect. Next, we take a look at the theoretical background of machine learning, algorithms for analysis and examples of practical use. As an important aspect we research the possibilities of optimizing model parameters and evaluate the success of our predictions.
Keywords:
machine learning
,
artificial intelligence
,
quality
,
bearing
,
Python
,
scikit-learn
,
sklearn
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back