izpis_h1_title_alt

Analiza stabilnosti in točnosti simulacij pri povezovanju simulatorjev v realnem času
ID DOLENC, JANJA (Author), ID Blažič, Boštjan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,06 MB)
MD5: C0A0E17AB7D17834ED0E9860BF9CA660

Abstract
Magistrsko delo obravnava algoritme za povezovanje dveh simulatorjev za izvajanje simulacij v realnem času. Simulacije v realnem času izračunavajo sistem tako hitro, da izhodne veličine simulatorja prikazujejo realne razmere v omrežju. To omogoča izmenjavo signalov z zunanjimi napravami in posledično testiranje različnih modulov elektroenergetskih naprav v simulacijah s strojno opremo v zanki. Tovrstne simulacije so vse pogostejše orodje pri reševanju inženirskih problemov. Omogočajo časovno nepotratno, cenovno ugodno, predvsem pa bolj varno, nedestruktivno testiranje naprav v elektroenergetskih sistemih. Testirajo se nizkonapetostni moduli, kot so regulatorji, zaščite, ipd. Testiranje je enostavnejše tudi z vidika potrebe po visokonapetostni opremi. S pomočjo simulacij lahko testiramo taka obratovalna stanja, ki jih v dejanskih omrežjih težko izvedemo. Problem, ki je privedel do analize povezav dveh simulatorjev, je bila simulacija aktivnega filtra oz. več paralelno vezanih aktivnih filtrov v modelu velikega omrežja. Sprva se je simulacije izvajalo le na enem simulatorju, a se je kasneje, zaradi lastnosti posameznega simulatorja, izkazalo, da je primernejša simulacija s kombinacijo dveh simulatorjev. Ob kombinaciji dveh simulatorjev pa so se pojavile težave s stabilnostjo sistema, ki jih je povzročilo povezovalno vezje. Izkazalo se je, da izbira primernega algoritma povezave vpliva na rezultate simulacij. V prvem delu naloge je razložena uporaba simulacij v realnem času in koncept dveh povezav, in sicer povezave z idealnim transformatorjem in povezave z nadzemnim vodom. Prikazani so koncepti izdelave povezave ter implementacija v obravnavan sistem. Dodana sta tudi opisa Nyquistovega in Bode-Nyquistovega stabilnostnega kriterija, ki določata stabilnostni pogoj. Nadalje se osredotočamo na simulacijske modele obeh povezav. Sprva smo obe povezavi modelirali v simulacijskem okolju Simulink, kjer smo se osredotočili na pravilno izvedbo povezave in vplive časovnega zamika v idealnem simulacijskem okolju. Povezavi smo preizkusili na enostavnejšem modelu z enim LC filtrom na bremenski strani, kasneje pa še na zahtevnejšem primeru, kjer so bili na bremenski strani priključeni trije paralelno vezani LC filtri. Po dobljenih rezultatih smo naredili simulacijska modela na simulatorjih RTDS in Typhoon HIL in vse obravnavane primere preizkusili v realnem simulacijskem okolju. Nadalje je opisan postopek izbire najprimernejšega povezovalnega vezja za sistem, ki ga v danem trenutku obravnavamo. Izbira algoritma povezave je prikazana na praktičnem primeru omrežja z dvovaljnim diodnim usmernikom na bremenski strani. V zaključku sledi komentar rezultatov in ugotovitev ter možnosti za nadaljnje izboljšave. Rezultati pričakovano izkazujejo višjo stabilnost povezave z nadzemnim vodom in večjo točnost povezave z idealnim transformatorjem. Izkazalo se je, da na stabilnost in točnost ne vpliva samo pravilna izvedba povezave, ampak je prisotnih mnogo dejavnikov, ki vplivajo na rezultate simulacij, mdr. šum, skaliranje in spremenljiv časovni zamik. Izboljšanje povezave ITM bi bilo možno s spreminjanjem frekvenčne karakteristike z dodatnimi filtri, s katerimi bi dosegli premik nestabilnih točk ali pa filtriranje frekvenčnih komponent okoli nestabilne točke. Medtem ko povezava z nadzemnim vodom pušča odprta vrata predvsem pri optimizaciji same povezave in izboljšanju fizičnih povezav, npr. zamenjavo z optičnimi vlakni.

Language:Slovenian
Keywords:simulator, simulacija v realnem času, povezava dveh simulatorjev, časovni zamik, večprocesorske simulacije, stabilnost simulacij, močnostna elektronika
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2018
PID:20.500.12556/RUL-102382 This link opens in a new window
Publication date in RUL:24.08.2018
Views:2211
Downloads:426
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of simulations stability and accuracy when connecting real-time simulators
Abstract:
The following master’s thesis presents two interface algorithms for real-time digital simulations. The system is calculated so fast using real-time digital simulations, that output variables represents the real situation in the system. This allows the exchange of signals with external devices and, consequently, the testing of various modules of power devices in hardware in the loop simulations. Hardware-in-the-loop simulations are an increasingly common tool for solving engineering problems. They provide time-saving, affordable, and particularly safer, non-destructive testing of devices in power systems. Tested devices are low-voltage modules, such as regulators, protectors and others. Testing is also easier with regard to the need for high-voltage equipment. Simulations are also used to test the operational states, that are difficult to perform in real systems. The main problem that led to the following analysis was testing of one or more parallel active filters in a large power system. At first, simulations were made on one real-time simulator, however a combination of two simulators turned out to be a better solution. Combining the two simulators required an interface algorithm, which caused stability problems. This resulted in precise analysis of interface algorithms, since selecting an appropriate interface algorithm results in better stability. Initially, the thesis describes the use and the significance of real-time digital simulations. Then, modelling and implementation of two interface algorithms are presented. The first interface algorithm presented is the Ideal Transformer Model (ITM) algorithm, whose stability criterion is described with the use of the Nyquist and Bode-Nyquist stability criterion, followed by the Transmission Line Model (TLM). Later on, the focus of the thesis is shifted to simulation models of both algorithms. Simulation references were determined using Matlab/Simulink. Two different cases were the subject of the study, simulations were made for an LC filter that was used as load and for three parallel LC filters, which represented the load. Further, the models on simulators RTDS and Typhoon HIL were made. Both cases were simulated in a laboratory experiment. In addition, the process of choosing an appropriate interface algorithm is given. The choice of an interface algorithm is shown on the practical example of a network with a two-wire diode rectifier on the load side. Finally, the results and conclusions are presented. As expected, the ITM algorithm showed high accuracy and poor stability, while TLM showed high stability but poor accuracy. An improvement of the ITM algorithm would be possible by changing the impedance characteristic with the use of additional filters. This would shift unstable operating points in the frequency range, where there is no impact on simulation stability. With the right optimization and improvements, the TLM algorithm could be used in real power system studies. Lastly, the modelling of algorithms is evidently the easiest part in building HIL simulations, due to many other factors like noise, signal scaling, non-constant time-delay and others that cause anomalies, which in turn affect simulation results.

Keywords:simulator, real-time simulation, interface algorithm, time-delay, multiprocessor simulations, simulation stability, power electronics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back