izpis_h1_title_alt

Kvazicauchyjeva zaporedja : delo diplomskega seminarja
ID Kapus, Nace (Author), ID Kandić, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (552,80 KB)
MD5: 69E209C1A457B723ADC68FB740287B49

Abstract
V delu si ogledamo podobnosti in razlike med Cauchyjevimi ter kvazicauchyjevimi zaporedji. Začnemo z lastnostmi kvazicauchyjevih zaporedij v ${\mathbb R}^n$. Nato izpeljemo nekaj računskih lastnosti ter dokažemo izreka o karakterizaciji zveznosti preslikav s Cauchyjevimi ter kvazicauchyjevimi zaporedji. V nadaljevanju se posvetimo kvazicauchyjevim zaporedjem v splošnih metričnih prostorih. Definiramo nepriraščajoče metrične prostore. Ogledamo si nekaj lastnosti ultrametričnih prostorov ter pokažemo, da so nepriraščajoči. Predstavimo $p$-adična števila kot zanimiv primer ultrametričnega prostora. V zaključku dela naredimo še karakterizacijo ultrametričnih prostorov.

Language:Slovenian
Keywords:zaporedja, Cauchyjev pogoj, kvazicauchyjeva zaporedja, nepriraščajoča metrika, ultrametrika
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-102145 This link opens in a new window
UDC:517.5
COBISS.SI-ID:18411609 This link opens in a new window
Publication date in RUL:20.07.2018
Views:1721
Downloads:308
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Quasi-Cauchy sequences
Abstract:
In this thesis we take a look at the similarities and differences between Cauchy and quasi-Cauchy sequences. We start with the properties of quasi-Cauchy sequences in ${\mathbb R}^n$. After that we examine the continuity of mappings in terms of preserving Cauchy and quasi-Cauchy sequences. Later, we focus on quasi-Cauchy sequences in general metric spaces. We introduce the notion of nonincremental metric spaces. Of our special interest are ultrametric spaces, as it turns out that they are nonicremental. We take a look at the $p$-adic numbers as an interesting example of ultrametric spaces. Finally, we make a characterization of ultrametric spaces.

Keywords:sequences, Cauchy condition, quasi-Cauchy sequences, nonincremental metric, ultrametric

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back