Many taxonomic unrelated organisms produce small beta-structured proteins that specifically bind to various cell membrane components. Some exhibit toxic activity by forming pores in the membranes, while other elicit molecular response just by binding to the cell surface.
In this work two protein families were studied thoroughly. NLP proteins are a group of proteins, produced by various phytopathogenic microorganisms and cause necrosis upon binding to target glycolipids, GIPCs, in dicot plant membranes. These proteins also stimulate plant immune response. By determining crystal structures of the NLPPya in complex with glucosamine and mannosamine, respectively, we gained structural insight into the interaction between NLP proteins and glycosyl part of GIPCs. To study differences between toxic and non-toxic NLP proteins we also determined crystal structure of non-toxic HaNLP3 protein. Close examination of HaNLP3 structure in comparison to toxic NLPPya pinpointed a set of unique structural features in the loops that contribute to the loss of binding site plasticity, and therefore, HaNLP3 toxic inactivity. We also determined structures of aegerolysins OlyA6 and RahU, which resulted in enriching the set of protein structures that specifically recognize cell membrane components.
Based on crystal structure comparison of NLP proteins, actinoporins, actinoporine-like protein, aegerolysins, thermostable direct hemolysins, fungal lectins and TLP proteins we observed general distribution to two main groups: proteins that bind to the cell membrane components and proteins that do not. Detailed topology analysis uncovered two structural motifs, present only in these protein families in contrast to other similar beta-sandwiches in nature. As a result, these proteins can be classified as a new group of beta-sandwiches which have adapted to their needs through evolution. Understanding the structural properties of such beta-sandwiches together with incorporating different binding sites to the same molecular basis can be used as delivery mechanisms or cell surface labeling in cell biology.
|