Details

Potencial zelenega porabništva v Sloveniji in dejavniki nakupnega odločanja o ekološki prehrani : magistrsko delo
ID Irman, Jan (Author), ID Čater, Barbara (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/irman2848-B.pdf This link opens in a new window

Language:Slovenian
Keywords:Slovenija, trženje, prehrana, ekologija, vedenje potrošnikov, nakup, odločanje, modeli, raziskave, analiza
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[J. Irman]
Year:2018
Number of pages:III, 80, 22 str.
PID:20.500.12556/RUL-100468 This link opens in a new window
UDC:366
COBISS.SI-ID:24406502 This link opens in a new window
Publication date in RUL:27.03.2018
Views:1193
Downloads:174
Metadata:XML DC-XML DC-RDF
:
IRMAN, Jan, 2018, Potencial zelenega porabništva v Sloveniji in dejavniki nakupnega odločanja o ekološki prehrani : magistrsko delo [online]. Master’s thesis. Ljubljana : J. Irman. [Accessed 13 August 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/irman2848-B.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The potential of green consumerism in Slovenia and factors affecting purchasing decisions of organic food
Keywords:Slovenia, marketing, nutrition, ecology, consumer behaviour, purchasing, decision making, models, research, analysis

Similar documents

Similar works from RUL:
  1. Conference paper scheduling tool
  2. Automated Analysis and Emotion-based Classification of Music Lyrics
  3. Device reconstruction based on KNX project file
  4. Semantics-based automated essay evaluation
  5. Efficient natural language processing with Python
Similar works from other Slovenian collections:
  1. SEO optimization tool
  2. IMPLEMENTATION OF A VIRTUAL AGENT USING OPEN-SOURCE VERBOT ENGINE
  3. Evaluation of machine learning methods with natural language processing
  4. Using words from daily news headlines to predict the movement of stock market indices
  5. Machine learning based analysis of scientific journals and authors

Back