izpis_h1_title_alt

Zmanjševanje nepopolnosti proizvodnih podatkov z metodo strojnega učenja
ID Purić, Diko (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window, ID Butala, Peter (Comentor)

.pdfPDF - Presentation file, Download (4,96 MB)
MD5: 23F317880540D69F3077C7AAFD72C0E4
PID: 20.500.12556/rul/e3fd7c0d-7814-4798-835f-8aabbb047060

Abstract
V modernih proizvodnih sistemih se zbirajo velike količine podatkov. Spremljanje vseh izvorov podatkov ter njihovo obvladovanje prek številnih informacijskih sistemov je postala zahtevna naloga, pri kateri prihaja do napak. Te lahko povzročajo nepopolnost in posledično manjšo kakovost podatkov. Manjkajoče vrednosti smo zapolnili z napovedmi metode strojnega učenja, imenovane nevronske mreže. Izkazale so se za učinkovit način iskanja vzorcev v podatkih. S stališča točnosti in vnašanja pristranskosti so pridobljeni rezultati precej boljši od najpogosteje uporabljenih pripisovalnih metod.

Language:Slovenian
Keywords:nepopolni podatki, kakovost podatkov, proizvodni podatki, strojno učenje, nevronske mreže, pripisovalne metode
Work type:Master's thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2018
PID:20.500.12556/RUL-100171 This link opens in a new window
Publication date in RUL:12.03.2018
Views:5100
Downloads:303
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reducing the incompleteness of manufacturing data with a machine learning method
Abstract:
In modern manufacturing systems, large amounts of data are being collected. Monitoring sources of data and managing that data through many information systems is a challenging task that results in errors. These reduce data quality, the source of which is often data incompleteness. We filled the missing values with the predictions of a machine learning method called neural network. They proved effective in search of data patterns. From a point of view of accuracy and inputting bias the results are better than those from other frequently used imputation methods.

Keywords:incomplete data, data quality, manufacturing data, machine learning, neural networks, imputation methods

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back