izpis_h1_title_alt

Existence of solutions for systems arising in electromagnetism
ID Hamdani, Mohamed Karim (Avtor), ID Repovš, Dušan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (770,92 KB)
MD5: AE50F9055C106E6B66AE2CCA48F4419B

Izvleček
In this paper, we study the following ▫$p(x)$▫-curl systems: ▫$$\begin{cases} \nabla \times (|\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u}) + a(x)|\mathbf{u}|^{p(x)-2}\mathbf{u} = \lambda f(x, \mathbf{u}) + \mu g(x, \mathbf{u}), \quad \nabla \cdot \mathbf{u} & \text{in} \; \Omega, \\ |\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u} \times \mathbf{n} = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0 & \text{on} \; \partial\Omega, \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^3$▫ is a bounded simply connected domain with a ▫$C^{1,1}$▫-boundary, denoted by ▫$\delta\Omega$▫, ▫$p \colon \overline{\Omega} \to (1, +\infty)$▫ is a continuous function, ▫$a \in L^\infty(\Omega$▫, ▫$f, g \colon \Omega \times \mathbb{R}^3 \to \mathbb{R}^3$▫ are Carathéodory functions, and ▫$\lambda, \mu$▫ are two parameters. Using variational arguments based on Fountain theorem and Dual Fountain theorem, we establish some existence and non-existence results for solutions of this problem. Our main results generalize the results of Xiang, Wang and Zhang (J. Math. Anal. Appl., 2016), Bahrouni and Repovš (Complex Var. Elliptic Equ., 2018), and Bin and Fang (Mediterr. J. Math., 2019).

Jezik:Angleški jezik
Ključne besede:variable exponent, p(x)-curl system, Palais Smale compactness condition, Fountain theorem, Dual Fountain theorem, existence of solutions, multiplicity of solutions, electromagnetism
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
Št. strani:art. 123898 [18 str.]
Številčenje:Vol. 486, iss.2
PID:20.500.12556/RUL-113866 Povezava se odpre v novem oknu
UDK:517.956.2
ISSN pri članku:0022-247X
DOI:10.1016/j.jmaa.2020.123898 Povezava se odpre v novem oknu
COBISS.SI-ID:18900057 Povezava se odpre v novem oknu
Datum objave v RUL:10.02.2020
Število ogledov:1854
Število prenosov:541
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj