izpis_h1_title_alt

Existence of solutions for systems arising in electromagnetism
ID Hamdani, Mohamed Karim (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (770,92 KB)
MD5: AE50F9055C106E6B66AE2CCA48F4419B

Abstract
In this paper, we study the following ▫$p(x)$▫-curl systems: ▫$$\begin{cases} \nabla \times (|\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u}) + a(x)|\mathbf{u}|^{p(x)-2}\mathbf{u} = \lambda f(x, \mathbf{u}) + \mu g(x, \mathbf{u}), \quad \nabla \cdot \mathbf{u} & \text{in} \; \Omega, \\ |\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u} \times \mathbf{n} = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0 & \text{on} \; \partial\Omega, \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^3$▫ is a bounded simply connected domain with a ▫$C^{1,1}$▫-boundary, denoted by ▫$\delta\Omega$▫, ▫$p \colon \overline{\Omega} \to (1, +\infty)$▫ is a continuous function, ▫$a \in L^\infty(\Omega$▫, ▫$f, g \colon \Omega \times \mathbb{R}^3 \to \mathbb{R}^3$▫ are Carathéodory functions, and ▫$\lambda, \mu$▫ are two parameters. Using variational arguments based on Fountain theorem and Dual Fountain theorem, we establish some existence and non-existence results for solutions of this problem. Our main results generalize the results of Xiang, Wang and Zhang (J. Math. Anal. Appl., 2016), Bahrouni and Repovš (Complex Var. Elliptic Equ., 2018), and Bin and Fang (Mediterr. J. Math., 2019).

Language:English
Keywords:variable exponent, p(x)-curl system, Palais Smale compactness condition, Fountain theorem, Dual Fountain theorem, existence of solutions, multiplicity of solutions, electromagnetism
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2020
Number of pages:art. 123898 [18 str.]
Numbering:Vol. 486, iss.2
PID:20.500.12556/RUL-113866 This link opens in a new window
UDC:517.956.2
ISSN on article:0022-247X
DOI:10.1016/j.jmaa.2020.123898 This link opens in a new window
COBISS.SI-ID:18900057 This link opens in a new window
Publication date in RUL:10.02.2020
Views:1858
Downloads:541
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back