Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Existence of solutions for systems arising in electromagnetism
ID
Hamdani, Mohamed Karim
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(770,92 KB)
MD5: AE50F9055C106E6B66AE2CCA48F4419B
Image galllery
Abstract
In this paper, we study the following ▫$p(x)$▫-curl systems: ▫$$\begin{cases} \nabla \times (|\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u}) + a(x)|\mathbf{u}|^{p(x)-2}\mathbf{u} = \lambda f(x, \mathbf{u}) + \mu g(x, \mathbf{u}), \quad \nabla \cdot \mathbf{u} & \text{in} \; \Omega, \\ |\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u} \times \mathbf{n} = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0 & \text{on} \; \partial\Omega, \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^3$▫ is a bounded simply connected domain with a ▫$C^{1,1}$▫-boundary, denoted by ▫$\delta\Omega$▫, ▫$p \colon \overline{\Omega} \to (1, +\infty)$▫ is a continuous function, ▫$a \in L^\infty(\Omega$▫, ▫$f, g \colon \Omega \times \mathbb{R}^3 \to \mathbb{R}^3$▫ are Carathéodory functions, and ▫$\lambda, \mu$▫ are two parameters. Using variational arguments based on Fountain theorem and Dual Fountain theorem, we establish some existence and non-existence results for solutions of this problem. Our main results generalize the results of Xiang, Wang and Zhang (J. Math. Anal. Appl., 2016), Bahrouni and Repovš (Complex Var. Elliptic Equ., 2018), and Bin and Fang (Mediterr. J. Math., 2019).
Language:
English
Keywords:
variable exponent
,
p(x)-curl system
,
Palais Smale compactness condition
,
Fountain theorem
,
Dual Fountain theorem
,
existence of solutions
,
multiplicity of solutions
,
electromagnetism
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2020
Number of pages:
art. 123898 [18 str.]
Numbering:
Vol. 486, iss.2
PID:
20.500.12556/RUL-113866
UDC:
517.956.2
ISSN on article:
0022-247X
DOI:
10.1016/j.jmaa.2020.123898
COBISS.SI-ID:
18900057
Publication date in RUL:
10.02.2020
Views:
1858
Downloads:
541
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back