Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Existence of solutions for systems arising in electromagnetism
ID
Hamdani, Mohamed Karim
(
Avtor
),
ID
Repovš, Dušan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(770,92 KB)
MD5: AE50F9055C106E6B66AE2CCA48F4419B
Galerija slik
Izvleček
In this paper, we study the following ▫$p(x)$▫-curl systems: ▫$$\begin{cases} \nabla \times (|\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u}) + a(x)|\mathbf{u}|^{p(x)-2}\mathbf{u} = \lambda f(x, \mathbf{u}) + \mu g(x, \mathbf{u}), \quad \nabla \cdot \mathbf{u} & \text{in} \; \Omega, \\ |\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u} \times \mathbf{n} = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0 & \text{on} \; \partial\Omega, \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^3$▫ is a bounded simply connected domain with a ▫$C^{1,1}$▫-boundary, denoted by ▫$\delta\Omega$▫, ▫$p \colon \overline{\Omega} \to (1, +\infty)$▫ is a continuous function, ▫$a \in L^\infty(\Omega$▫, ▫$f, g \colon \Omega \times \mathbb{R}^3 \to \mathbb{R}^3$▫ are Carathéodory functions, and ▫$\lambda, \mu$▫ are two parameters. Using variational arguments based on Fountain theorem and Dual Fountain theorem, we establish some existence and non-existence results for solutions of this problem. Our main results generalize the results of Xiang, Wang and Zhang (J. Math. Anal. Appl., 2016), Bahrouni and Repovš (Complex Var. Elliptic Equ., 2018), and Bin and Fang (Mediterr. J. Math., 2019).
Jezik:
Angleški jezik
Ključne besede:
variable exponent
,
p(x)-curl system
,
Palais Smale compactness condition
,
Fountain theorem
,
Dual Fountain theorem
,
existence of solutions
,
multiplicity of solutions
,
electromagnetism
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2020
Št. strani:
art. 123898 [18 str.]
Številčenje:
Vol. 486, iss.2
PID:
20.500.12556/RUL-113866
UDK:
517.956.2
ISSN pri članku:
0022-247X
DOI:
10.1016/j.jmaa.2020.123898
COBISS.SI-ID:
18900057
Datum objave v RUL:
10.02.2020
Število ogledov:
1857
Število prenosov:
541
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj