Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Deep learning for quadratic hedging in incomplete jump market
ID
Agram, Nacira
(
Avtor
),
ID
Øksendal, Bernt Karsten
(
Avtor
),
ID
Rems, Jan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,17 MB)
MD5: 0F4DFD7865512813F1BCECF371C8ED56
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s42521-024-00112-5
Galerija slik
Izvleček
We propose a deep learning approach to study the minimal variance pricing and hedging problem in an incomplete jump diffusion market. It is based on a rigorous stochastic calculus derivation of the optimal hedging portfolio, optimal option price, and the corresponding equivalent martingale measure through the means of the Stackelberg game approach. A deep learning algorithm based on the combination of the feed-forward and LSTM neural networks is tested on three different market models, two of which are incomplete. In contrast, the complete market Black–Scholes model serves as a benchmark for the algorithm’s performance. The results that indicate the algorithm’s good performance are presented and discussed. In particular, we apply our results to the special incomplete market model studied by Merton and give a detailed comparison between our results based on the minimal variance principle and the results obtained by Merton based on a different pricing principle. Using deep learning, we find that the minimal variance principle leads to typically higher option prices than those deduced from the Merton principle. On the other hand, the minimal variance principle leads to lower losses than the Merton principle.
Jezik:
Angleški jezik
Ključne besede:
option pricing
,
incomplete market
,
equivalent martingale measure
,
Merton model
,
deep learning
,
LSTM
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 463-499
Številčenje:
Vol. 6, iss. 3
PID:
20.500.12556/RUL-162188
UDK:
519.2:004.8
ISSN pri članku:
2524-6984
DOI:
10.1007/s42521-024-00112-5
COBISS.SI-ID:
208122627
Datum objave v RUL:
19.09.2024
Število ogledov:
117
Število prenosov:
53
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Digital finance
Skrajšan naslov:
Digit. finance
Založnik:
Springer Nature
ISSN:
2524-6984
COBISS.SI-ID:
114564611
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Swedish Research Council
Številka projekta:
2020-04697
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0448
Naslov:
Stohastične metode in njihova uporaba
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj