izpis_h1_title_alt

Deep learning for quadratic hedging in incomplete jump market
ID Agram, Nacira (Avtor), ID Øksendal, Bernt Karsten (Avtor), ID Rems, Jan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,17 MB)
MD5: 0F4DFD7865512813F1BCECF371C8ED56
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s42521-024-00112-5 Povezava se odpre v novem oknu

Izvleček
We propose a deep learning approach to study the minimal variance pricing and hedging problem in an incomplete jump diffusion market. It is based on a rigorous stochastic calculus derivation of the optimal hedging portfolio, optimal option price, and the corresponding equivalent martingale measure through the means of the Stackelberg game approach. A deep learning algorithm based on the combination of the feed-forward and LSTM neural networks is tested on three different market models, two of which are incomplete. In contrast, the complete market Black–Scholes model serves as a benchmark for the algorithm’s performance. The results that indicate the algorithm’s good performance are presented and discussed. In particular, we apply our results to the special incomplete market model studied by Merton and give a detailed comparison between our results based on the minimal variance principle and the results obtained by Merton based on a different pricing principle. Using deep learning, we find that the minimal variance principle leads to typically higher option prices than those deduced from the Merton principle. On the other hand, the minimal variance principle leads to lower losses than the Merton principle.

Jezik:Angleški jezik
Ključne besede:option pricing, incomplete market, equivalent martingale measure, Merton model, deep learning, LSTM
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 463-499
Številčenje:Vol. 6, iss. 3
PID:20.500.12556/RUL-162188 Povezava se odpre v novem oknu
UDK:519.2:004.8
ISSN pri članku:2524-6984
DOI:10.1007/s42521-024-00112-5 Povezava se odpre v novem oknu
COBISS.SI-ID:208122627 Povezava se odpre v novem oknu
Datum objave v RUL:19.09.2024
Število ogledov:137
Število prenosov:53
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Digital finance
Skrajšan naslov:Digit. finance
Založnik:Springer Nature
ISSN:2524-6984
COBISS.SI-ID:114564611 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Swedish Research Council
Številka projekta:2020-04697

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0448
Naslov:Stohastične metode in njihova uporaba

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj