izpis_h1_title_alt

Data stream mining for predicting the thermal power consumption of the Mars Express spacecraft
ID Stevanoski, Bozhidar (Avtor), ID Kocev, Dragi (Avtor), ID Osojnik, Aljaž (Avtor), ID Dimitrovski, Ivica (Avtor), ID Džeroski, Sašo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,82 MB)
MD5: 642E7B959F330A0820027925B1C1CD64
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0094576523002102 Povezava se odpre v novem oknu

Izvleček
The Mars Express (MEX) spacecraft, operated by the European Space Agency (ESA), has been orbiting Mars for the past 18 years. During this period, it has provided unprecedented scientific data about the red planet, but it has also aged, and its batteries have degraded. Thus, MEX needs careful and accurate power modeling to continue its significant contribution without breaking, twisting, deforming, or failure of any equipment. The power consumed by the autonomous thermal subsystem, that keeps all equipment within its operating temperature in a difficult environment, is the only unknown variable in the spacecraft’s power budget. In this pilot study, we address the task of predicting the thermal power consumption (TPC) of MEX on all of its 33 thermal power lines, learning predictive models from the stream of its telemetry data, which is a task of multi-target regression on data streams. To analyze such data streams and to model the MEX power consumption, we consider both local and global approaches, i.e., predicting each target by a separate model and predicting all targets at once by a single model, respectively. Our evaluation of the considered approaches investigates their performance in predicting the MEX power consumption, the influence of the time resolution of the measurements of TPC on this performance, and the success of the methods in detecting and adapting to change.

Jezik:Angleški jezik
Ključne besede:data streams, multi-target regression, online ensembles, spacecraft operations, thermal power consumption
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:Str. 411-427
Številčenje:Vol. 210
PID:20.500.12556/RUL-148273 Povezava se odpre v novem oknu
UDK:629.7
ISSN pri članku:1879-2030
DOI:10.1016/j.actaastro.2023.04.037 Povezava se odpre v novem oknu
COBISS.SI-ID:151198723 Povezava se odpre v novem oknu
Datum objave v RUL:09.08.2023
Število ogledov:782
Število prenosov:57
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Acta astronautica
Skrajšan naslov:Acta astronaut.
Založnik:Elsevier, International Academy of Astronautics
ISSN:1879-2030
COBISS.SI-ID:98352387 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:podatkovni tokovi, večciljna regresija, sprotno učenje ansamblov, upravljanje vesoljskih plovil, poraba energije termalnega sistema, planet Mars, raziskovanje Marsa, vesoljska plovila

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0103
Naslov:Tehnologije znanja

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-2505
Naslov:Napovedno razvrščanje na podatkovnih tokovih

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:952215
Naslov:Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization
Akronim:TAILOR

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj