Magistrsko delo obravnava analizo in modeliranje volatilnosti Bitcoina, kriptovalute z največjo tržno kapitalizacijo. Volatilnost je statistična mera razpršenosti donosov. Aproksimirali smo jo z realizirano historično volatilnostjo, na podlagi visoko frekvenčnih logaritemskih donosov. Definirali smo dva osnovna modela, bazirana na konstantni vrednosti in martingalski lastnosti, ter ju poskušali preseči z ekonometričnimi modeli in modeli strojnega učenja. Uporabili smo tri različne funkcije napak, relativno na naše osnovne modele: MAE, MAPE in RMSE. Najuspešnejši ekonometrični model je model HAR, najuspešnejši model strojnega učenja je rekurenčna nevronska mreža tipa LSTM. Slednja je boljša tudi od modela HAR.
|