izpis_h1_title_alt

Predicting Bitcoin’s volatility : master's thesis
ID Pristovnik, Jan (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Basrak, Bojan (Comentor)

.pdfPDF - Presentation file, Download (10,26 MB)
MD5: 75C06ACF41419BF99E518D20588D35B2

Abstract
The master's thesis addresses analyzing and modeling the volatility of Bitcoin, the cryptocurrency with the largest marketcap. Volatility is a statistical measure of the dispersion of returns. We approximated it with realized volatility calculated on intra-daily log returns. We defined two baseline models based on a constant value and martingale property and tried to outperform them with both econometric and machine learning models. We used three error functions relative to our baseline models: MAE, MAPE, and RMSE. The best-performing econometric model is the HAR model. The best-performing machine learning model, which also outperforms the HAR model, is the LSTM recurrent neural network.

Language:English
Keywords:volatility, forecasting, time series, cryptocurrency, time-series analysis, machine learning, recurrent neural networks, LSTM
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-143592 This link opens in a new window
UDC:519.2
COBISS.SI-ID:135369475 This link opens in a new window
Publication date in RUL:29.12.2022
Views:940
Downloads:166
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Napovedovanje volatilnosti Bitcoina
Abstract:
Magistrsko delo obravnava analizo in modeliranje volatilnosti Bitcoina, kriptovalute z največjo tržno kapitalizacijo. Volatilnost je statistična mera razpršenosti donosov. Aproksimirali smo jo z realizirano historično volatilnostjo, na podlagi visoko frekvenčnih logaritemskih donosov. Definirali smo dva osnovna modela, bazirana na konstantni vrednosti in martingalski lastnosti, ter ju poskušali preseči z ekonometričnimi modeli in modeli strojnega učenja. Uporabili smo tri različne funkcije napak, relativno na naše osnovne modele: MAE, MAPE in RMSE. Najuspešnejši ekonometrični model je model HAR, najuspešnejši model strojnega učenja je rekurenčna nevronska mreža tipa LSTM. Slednja je boljša tudi od modela HAR.

Keywords:volatilnost, napovedovanje, časovne vrste, kriptovaluta, analiza časovnih vrst, strojno učenje, rekurenčne nevronske mreže, LSTM

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back